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Abstract

We study how the p-dimensional persistent homology
module from the Vietoris-Rips filtration of a point
cloud X can be determined by the 0-dimensional per-
sistent homology of inverse barcode problem solutions,
via a specific persistence module resolution. We also
discuss how resolutions of 0-dimensional persistent
homology modules given by a presentation preserve
0-dimensional additive partial matchings and how we
can bound p-dimensional partial matchings in terms
of the well-behaved 0-dimensional ones. These results
can be seen as a first step towards a proof of the
stability of additive partial matchings.

1 Introduction

Persistent homology has become one of the most pow-
erful tools in Topological Data Analysis (TDA) [1].
The categorical-algebraic perspective provided by per-
sistence modules helps us understand and develop the
theory of persistent homology [2].

In practice, the TDA pipeline [3] consists of taking
a point cloud X, building a specific filtration of the
data (e.g., Vietoris-Rips), extracting p-dimensional
topological-scale information by computing the persis-
tent homology modules PHp(X) using simplicial ho-
mology over Z2, and visualizing barcodes B(PHp(X))
using specialized software [4].

A persistence module M : R → Veck is a functor
from the real numbers to the category of vector spaces
over a fixed field k. The vector space M(t) ∈ Veck
is denoted by Mt. The direct sum, intersection, and
quotient of persistence modules are also persistence
modules [5]. An interval I ⊂ R is considered of the
form I = ⟨a, b⟩ for a ≤ b ∈ R, or b = +∞. Given an
interval I ⊂ R, the interval module kI is the persis-
tence module where kIt = k for all t ∈ I and kIt = 0
otherwise, while the structure maps kIt → kIs, with
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t ≤ s, are the identity whenever possible, and zero
otherwise. When the persistence module is pointwise
finite-dimensional (p.f.d.) then it can be decomposed
uniquely (up to isomorphism) as a direct sum of in-
terval modules, and are completely described by a
multiset called its barcode (see Th. 1).
Given two persistence modules U and V , a persis-

tence morphism f : V → U is a natural transforma-
tion i.e., a collection of linear maps {fc}c∈Obj(C) that
commute with the structure maps of the persistence
modules U and V . A question that arises is whether
f : V → U induces a relation—specifically, a par-
tial matching—between their barcodes. It is known
that such partial matchings cannot be functorial [6].
Recently, a block function associated with the mor-
phism Mf [7] was proposed, which is algebraically
well-defined, linear with respect to the direct sum
of persistence morphisms, efficiently computable via
matrix reduction techniques, and induces a partial
matching between the barcodes of U and V .
We establish in this paper that the p-dimensional

persistent homology module is linked to the 0-
dimensional persistent homology of a solution to the
inverse barcode problem allowing us to determine the
former from the latter, thanks to a specific persistence
module resolution. This approach aligns with the re-
cent idea in AI, particularly with Kolmogorov-Arnold
Networks (KANs) [8], suggesting that the informa-
tion of a high-dimensional point cloud is encoded in
a composition of lower-dimensional structures. We
show that certain resolutions of 0-dimensional persis-
tent homology preserve additive partial matchings [9],
which allows us to bound p-dimensional matchings
using well-behaved 0-dimensional ones.

2 Persistence bases and presentations

Interval modules are the “building blocks” of persis-
tence modules.

Theorem 1 (from [10]) Every p.f.d. persistence
module V can be decomposed uniquely:

V ∼=
⊕
I∈SV

(mI⊕
i=1

kI

)
where SV is a set of intervals.
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The multiset B(V ) = (SV ,m) is called the barcode
of V where m : SV → N and m(I) is denoted by mI .

A free persistence module is of the form ⊕
i∈Γ

k[ai,+∞)

for an index set Γ and values ai ∈ R. A persistence
basis for a persistence module V is an isomorphism

α :
⊕
i∈Γ

k⟨ai,bi⟩ → V,

where Γ is an index set and ⟨ai, bi⟩ denotes an in-
terval. By Th. 1, a persistence basis exists for any
p.f.d persistence module. The persistence generator
αi : k⟨ai,bi⟩ → V is defined as the morphism α re-
stricted to k⟨ai,bi⟩ for i ∈ Γ. We can also specify a
persistence basis α by its set of persistence generators,
A = {αi}i∈Γ. Given a subset S = {αi}i∈J ⊂ A, we
define the span of S, denoted by ⟨S⟩, as the image of
the sum of the persistence generators of S, that is,

⟨S⟩ = Im
(⊕

i∈J

αi : k⟨ai,bi⟩ → V
)
.

For t ∈ R, we define St := {αit(1k) : i ∈ J, t ∈ ⟨ai, bi⟩}.
In particular, Vt = ⟨At⟩ and ⟨S⟩t = ⟨St⟩, being At and
St linearly independent sets of vectors in Vt. Given A
and I = ⟨a, b⟩, we define the sets of generators [9]:

Ã+
I = {αi ∈ A | (ai < a) or (ai = a and bi ≤ b)} ,

Ã−
I = {αi ∈ A | (ai < a) or (ai = a and bi < b)} ,

Â+
I = {αi ∈ A | (bi < b) or (bi = b and ai ≤ a)} ,

Â−
I = {αi ∈ A | (bi < b) or (bi = b and ai < a)} .

3 Block functions

Given two barcodes B1 = (S1,m) and B2 = (S2, n), a
block function [7] is a function

M : S1 × S2 −→ N ∪ {0}

such that
∑

J∈S2
M(I, J) ≤ mI for every I ∈ S1.

When M also satisfies that
∑

I∈S1
M(I, J) ≤ nJ for

every J ∈ S2 then M induces a partial matching
between B1 and B2 (Remark 2.5 [7]).
Given a persistence morphism f : V → U , a persis-

tence basis A of V and a persistence basis B of U we
define the vector space:

ZIJt :=
fṼ +

It ∩ Û+
Jt

fṼ −
It ∩ Û+

Jt + fṼ +
It ∩ Û−

Jt

where, for all t ∈ I and s ∈ J :

Ṽ ±
It =

〈
Ã±

It

〉
, V̂ ±

It =
〈
Â±

It

〉
,

Ũ±
Js =

〈
B̃±

Js

〉
, Û±

Js =
〈
B̂±

Js

〉
.

We define the following operator:

M̃f (I, J) := dimZIJd where I = ⟨a, b⟩, J = ⟨c, d⟩.

Theorem 2 (from [9]) The operator M̃f is a block
function and always induces a unique partial matching
between B(V ) and B(U).

4 0-Dimensional persistent homology resolutions
and additive matchings

We restrict our study to persistence modules obtained
from a point cloud X ⊂ Rn via the Vietoris-Rips
filtration defined below.

Let X be a finite metric space (point cloud) and let
ε > 0. The Vietoris–Rips complex VRε(X) associated
with X at scale ε is the simplicial complex whose ver-
tices are the points in X, and a set of points x0, . . . , xp

spans a p-simplex of VRε(X) if and only if

d(xi, xj) ≤ ε for all 0 ≤ i, j ≤ p.

The Vietoris-Rips filtration of X is the family of
Vietors-Rips complexes {VRε(X)}ε∈R. See Fig. 1.

Figure 1: Left ε = 0: Point cloud. Visualization of the
associated 1-skeleton of VRε(X) for some values of ε.

We denote the p-dimensional persistent homology
of the Vietoris-Rips filtration of X by PHp(X). It cap-
tures the p-holes at every value of ε such as connected
components (p = 0), holes (p = 1), or cavities (p = 2).
Note that the inclusion of point clouds X ↪→ Y

induces an inclusion VRε(X) ↪→ VRε(Y ) for every ε
which induces a persistence morphism f : PHp(X) →
PHp(Y ). So, to study topological features of subsets
with respect to a dataset, we could study persistence
morphisms induced by the inclusions.

Lemma 3 Given point cloudsX, Y , and a persistence
morphism f : PH0(X) → PH0(Y ) (not necessarily
induced by the inclusion), there are free persistence
modules, M0, M

′
0, M1, M

′
1, and persistence morphisms

f0 : M0 → M ′
0, f1 : M1 → M ′

1, such that:

where the rows are short exact sequences (i.e. reso-
lutions). The matrix representation of f in terms of
persistence bases equals that of f0; the matrix repre-
sentation of f1 is the result of removing the column and
row associated with the infinite persistence interval.
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Sketch of the proof: The following commutative
diagram is obtained by applying Th. 1 to PH0(X)
and PH0(Y ) and building M0 and M1 in O(1) time
given the PH0(X) decomposition. Knowing that every
interval module in the decomposition of PH0(X) and
PH0(Y ) starts at 0, one can explicitly build the free
modules M0,M

′
0,M1 and M ′

1 as follows:

Knowing that each interval module in the decomposi-
tion of X (resp. Y ) can be uniquely associated with
the equivalence class of a point of X (resp. Y ), we can
build persistence bases in such a way that the diagram
commutes and the rows are exact. See Fig 2. □

Figure 2: Visual description of the short exact se-
quence: 0 → M1 ↪→ M0 ↠ PH0(X) → 0 associated
with the point cloud from Fig. 1. Intervals are ordered
such that the quotient of an interval of B(M0) by the
interval of B(M1) at the same position results in the
interval of B(PH0(X)) at the same position too.

Lemma 4 Under the hypothesis of Lemma 3 and
choosing an adequate persistence basis for each persis-
tence module,

M̃f ([0, b), [0, β)) = M̃f0([b,+∞), [β,+∞))

where b, β ∈ R≥0.

Sketch of the proof: The vector spaces Z[0,b) [0,β) β

and Z[b,+∞) [β,+∞) d have the same dimension with d
big enough. □

5 Main Results

Lemma 5 (inverse barcode problem.) Let B(V )
be the barcode of a persistence module V such that:
every interval starts at 0; there is a finite number of
intervals; and there is exactly one interval ending at
+∞. Then, it is possible to build a point cloud A ⊂ R
such that B(V ) = B(PH0(A)), i.e, PH0(A) ∼= V , where
A is a solution to the inverse barcode problem of V .

Sketch of the proof: We set 0 ∈ A, corresponding
to the infinite persistence interval of the barcode, and

then proceed by adding, to A, the points on the real
line corresponding to the cumulative sum of the right
endpoints. See the figure below. □

Lemma 6 Given point clouds X,Y , and a persistence
morphism g : PHp(X) → PHp(Y ) (not necessarily
induced by the inclusion), there exist free persistent
modules, M0,M

′
0,M1,M

′
1, and persistence morphisms

f0 : M0 → M ′
0, f1 : M1 → M ′

1, such that the diagram
of Fig. 3 commutes and:

• 0 → M1 ↪→ M0 ↠ PHp(X) → 0 is a resolution
(idem for Y).

• 0 → Mi ↪→ Ni ↠ PH0(X
p
i ) → 0, i = 0, 1, is a

resolution to which we apply Lemma 3, and Xp
i

is the inverse barcode problem solution for the
quotient of free modules Ni/Mi (idem for Y ).

• Applying Lemma 3, the matrix representation of
fi is the same as the matrix representation of γi
and gi (removing any column and row associated
with infinite intervals) and the additive partial
matching of fi is the same as the one of gi in the
sense of Lemma 4 (the same holds for Y ).

Sketch of the proof: By Th. 1, we can decompose
the persistence modules PHp(X) and PHp(Y ), and
then obtain the commutative rectangle in the center
of the diagram of Fig. 3, building M0,M

′
0,M1 and M ′

1

in a similar fashion as Lemma 3. The outer structure
in the diagram follows from considering the free per-
sistence modules M0, M

′
0, M1, M

′
1 as the first module

(starting from the left) in the resolution of one of the
rows in Lemma 3. □

The following result characterizes the p-dimensional
persistent homology of a point cloud X in terms of
the 0-dimensional homology of certain inverse barcode
problem solutions associated with the p-dimensional
barcode with respect to the persistence morphism of
persistent homology modules.

Theorem 7 (Characterization of PHp) Under
the hypothesis of Lemma 3, we have the following
commutative diagram:
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Figure 3: Diagram for Lemma 6.

Sketch of the proof: Intervals of PH0(X
p
1 ) start

at 0 and end at the right endpoint of the associated
interval of PHp(X), and intervals of PH0(X

p
0 ) start

at 0 and end at the left endpoint of the associated
interval of PHp(X). The same holds for PHp(Y ). We
deduce that the diagram commutes and the rows are
exact. □

A direct result of the previous one is:

PHp(X) ∼=
PH0(X

p
1 )

PH0(X
p
0 )

, PHp(Y ) ∼=
PH0(Y

p
1 )

PH0(Y
p
0 )

.

Theorem 8 Under the hypothesis of Lemma 3, if
I = [a, b) and J = [α, β), a, b, α, β ∈ R≥0, then:

M̃g(I, J) ≤ M̃f0([a,+∞), [α,+∞))

+ M̃f1([b,+∞), [β,+∞))

= M̃g0([a,+∞), [α,+∞))

+ M̃g1([b,+∞), [β,+∞)).

Sketch of the proof: We get the bound by examining
the dimension of the vector spaces ZIJt. □

6 Future work and open problems

We plan to give a complete description of
M̃g([a, b), [α, β)) in terms of M̃g0([a,+∞), [α,+∞))

and M̃g1([b,+∞), [β,+∞)). We also plan to apply
these results to data quality and to the study of per-
sistence bimodules via fibered barcodes.
Code availability: Code and examples available at
https://github.com/Cimagroup/tdqual.git.
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Appendix. Figures and complementary exam-
ple: In this appendix, we present the figures in the
same order but in a larger format to enhance readabil-
ity and provide greater clarity for the reader, and an
example of application of the theory developed in the
paper with a link to the code.

A Figures:

Figure 4: Characterization of PH1(X).
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Figure 5: Diagram for the proof of Lemma 3
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Figure 6: Diagram for Lemma 6.
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B Noisy circle example

Code available at: https://github.com/Cimagroup/tdqual.git

Figure 7: Noisy circle point cloud X.

https://github.com/Cimagroup/tdqual.git
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Figure 8: 0-dimensional and 1-dimensional barcode of
X.

Figure 9: Characterization of PH1(X).
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Figure 10: Inverse barcode problem solution X1
0 .

Figure 11: Inverse barcode problem solution X1
1 .
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