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Abstract

In this paper, we consider the Shortest Descend-
ing Path (SDP) Problem. The SDP Problem is
the problem of computing a shortest path be-
tween two given points on a polyhedral terrain,
with the additional constraint that the path may
never increase in z coordinate. No polynomial
algorithm is known to compute an SDP. In this
paper, we present a construction demonstrating
that an SDP is not computable within the ACMQ
model, even in a terrain consisting of only three
triangles. This result provides evidence of the dif-
ficulty of solving the problem exactly.

1 Introduction

A polyhedral terrain is a triangulated polyhedral
surface such that every vertical line intersects it
at a single point. Given a polyhedral terrain and
two points s and t on the terrain, the Shortest De-
scending Path (SDP) problem consists of finding
a shortest path from s to t such that the path is
descending (i.e., its z-coordinate never increases
as we move along it).

Descending paths on terrains were first studied
by de Berg and van Kreveld [5], who proposed a
data structure to determine if a descending path
between two given points exists, in O(log n) time.
The data structure uses linear space and can be
built in O(n log n) time. The question of com-
puting a shortest descending path was left open
in [5]. Years later, Ahmed et al. [1] revisited
the problem, proposing two approximation algo-
rithms based on discretization. The exact compu-
tation of SDPs was first explored by Ahmed and
Lubiw [2], who showed that the main difficulty of
the problem lies on finding the shortest descend-
ing path that goes through a given sequence of
triangles. Indeed, they show that the SDP prob-
lem can be reduced to finding an SDP through a
given triangle sequence.

Exact algorithms have been proposed for some
particular cases, such as convex [9], pseudo-
convex, and pseudo-orthogonal terrains [2]. Vari-
ous (1 + ε)−approximation algorithms have been
proposed by different authors in recent years.
For instance, Ahmed et al. [1] considered using

Steiner points, a technique that involves placing
additional points instead of directly connecting
edges, which are then utilized by a path finding
algorithm. Cheng and Jin [4] follow a different
approach, based on methods for shortest paths
on polyhedra.

In this work, we show that there are intrinsic
algebraic difficulties in computing SDPs. We do
this by showing that SDPs cannot be computed
in the Algebraic Computation Model over the Ra-
tional Numbers (ACMQ). This model was first
used in computer science by Bajaj [3]1. In the
ACMQ, one can exactly compute any number ob-
tained from rational numbers by applying opera-
tions +,−,×,÷ and k

√, for any integer k ≥ 2.
More recently, De Carufel et al. [7] applied the
model to show that the weighted region problem
(WRP) cannot be solved within the ACMQ model
(even if we restrict the problem to a single region
it is still unsolvable within ACMQ, see [6]). The
WRP consists in finding a shortest path between
two points in a weighted subdivision, where the
length of each portion of the path inside a re-
gion gets multiplied by the region weight. Inter-
estingly, Ahmed and Lubiw [2] observed that the
SDP problem is similar to the WRP, in the sense
that the bend angles of SDPs are related in a way
similar to bend angles of solutions to the WRP,
concluding that the SDP problem is as hard, or
even harder, than the WRP.

In this work, we take the similarities between
the WRP and the SDP (which are particular
cases of the Shortest Anisotropic Path problem[8])
problem one step further, by showing that, as
with the WRP, the SDP problem cannot be solved
exactly within the ACMQ. This gives new evi-
dence of the unsolvability of the problem.

2 Preliminaries

2.1 Shortest Descending Path

A polyhedral terrain, or just terrain, is given as
a triangulation of a set of points in the plane,
where each point has an elevation. It can be also
considered as an xy-monotone polyhedral surface.

1The name ACMQ was coined by De Carufel et al. [7].
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A geodesic path is, locally, the shortest path on a
surface between two points.

Given two points on the terrain s and t, where
the elevation of t is not higher than that of s,
we consider descending geodesic paths from s to
t as geodesic paths where the z-coordinate along
the path from s to t never increases. Moreover, if
such a path is the shortest one among all possible
descending geodesic paths, we call it a shortest
descending path.

Ahmed and Lubiw [2] showed that, given a se-
quence of triangles, there is at most one shortest
descending path. They also demonstrated that
the main challenge in the SDP problem is com-
puting the exact SDP through a given triangle
sequence.

2.2 Galois Theory

Galois Theory is a branch of abstract algebra that,
at its core, answers the question of which poly-
nomials can be solved using radicals—operations
involving addition (+), subtraction (−), multipli-
cation (·), division (÷), and root extraction ( n

√
·).

This is relevant, as the ACMQ is restricted to
work with numbers that can be represented as
radical expressions, meaning they are obtained
through a finite sequence of these operations.

De Carufel et al. [7] presented a criterion to
determine when a polynomial is solvable in the
ACMQ model.

Lemma 2.1 (See [7]) Let p(x) be a polynomial of
even degree d ≥ 6. Suppose that there are three
prime numbers q1, q2 and q3 that do not divide
the discriminant ∆(p(x)) of p(x) such that

p(x) ≡ pd(x) mod q1

p(x) ≡ p1(x)pd−1(x) mod q2

p(x) ≡ p′1(x)p2(x)pd−3(x) mod q3

where pi(x) denotes an irreducible polynomial
of degree i modulo qj . Then p(x) = 0 is unsolv-
able within the ACMQ model.

3 Construction

Our proof consists on finding a particular con-
struction, an instance of the SDP problem com-
posed of a small set of triangles, that represents
a terrain and two points on it, such that comput-
ing the SDP from one point to the other involves
solving p(x) = 0 for a polynomial that satisfies
the conditions of unsolvability of Lemma 2.1.

Next we describe our construction. Consider
the problem of finding the Shortest Descending
Path from A = (−4, 10, 6) to D = (4, 2,−4)
embedded in the mesh defined by the following
points:

A = (−4, 10, 6)
O = (0, 0, 0)
B = (1, 8, 1)
C = (4, 4, 2)
D = (4, 2,−4)
The terrain is defined by only three triangles:

∆OAB,∆OBC and ∆OCD (Figure 1).
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Figure 1: A visual representation of the instance,
in 3D. The shadows are parallel projections to
help visualize the 3D structure.

We define two parameters t1, t2 ∈ [0, 1] and we
define two points P1 = Bt1+O(1− t1) = Bt1 and
P2 = Ct2 + O(1 − t2) = Ct2. Any path from A
to D can be expressed as a sequence A → P1 →
P2 → D, for two values t1, t2. Consequently, the
distance from A to D, parametrized by t1 and t2
(Figure 2), is given by:

d(t1, t2) =

√
(2− 4t2)

2
+ (4− 4t2)

2
+ (−2t2 − 4)

2
+√

(−8t1 + 4t2)
2
+ (−t1 + 2t2)

2
+ (−t1 + 4t2)

2
+√

(t1 − 6)
2
+ (t1 + 4)

2
+ (8t1 − 10)

2

Because the optimal solution lays precisely un-
der the boundary condition enforced by the non-
ascending constraint (Figure 2), we know that
t2 = B.z

C.z t1 = 1
2 t1, and thus we can write the dis-

tance solely in terms of t1:

d(t1) =

√
(2− 2t1)

2
+ (4− 2t1)

2
+ (−t1 − 4)

2
+

√
37

√
t21+√

(t1 − 6)
2
+ (t1 + 4)

2
+ (8t1 − 10)

2



XXI Spanish Meeting on Computational Geometry, Santander, June 30-July 2, 2025

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
t1

t 2

Figure 2: Contour Plot of the distance function
with two parameters t1 and t2. Darker is lower,
with 17.7 to 17.9 the darkest and 21.3 to 21.5
the lightest. The empty region is the region of
points that would make the path non-descending,
therefore the diagonal of the boundary represents
the no-ascending constraint. We can see that for
this instance the best solutions are found near this
constraint.

For 0 < t1 ≤ 1, this function is differentiable,
and thus we can consider its derivative:

d

dt1
d(t1) =
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2
+ (4− 2t1)

2
+ (−t1 − 4)

2
+

√
37
√
t21

t1
+

66t1 − 82√
(t1 − 6)

2
+ (t1 + 4)

2
+ (8t1 − 10)

2

We write it all under the same denominator and
set it equal to 0:

d

dt1
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= 0

The denominator is equal to 0 if and only if

t1 = 0, so we can multiply both sides by the de-
nominator.
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Because t1 ≥ 0, we have
√

t21 = t1
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Since we have 0 < t1, we can divide by t1.
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Some algebraic manipulations lead us to the
fact that the only root in [0, 1] of this function
is the smallest real root of the following polyno-
mial:

20552697x8 − 175216932x7 + 738557316x6−
1914201240x5 + 3347241359x4 − 3951992296x3+

3144512520x2 − 1805138080x+ 436621424

Next we show that this polynomial is not solv-
able by radicals. To that end, we need three
primes q1, q2, q3 that adhere to the conditions of
Lemma 2.1. In particular, we find that the poly-
nomial is equivalent to:
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Figure 3: The red path represents the Shortest
Descending Path on this problem. Note that the
line is less straight than it could be just to enforce
the no-ascending constraint.

45(x8 + 49x7 + 38x6+

48x5 + 51x4 + 5x3 + 4x2 + 53x+ 1) mod 67

3(x+ 15)(x7 + 6x4+

15x3 + 7x2 + x+ 8) mod 17

17(x+ 3)(x2 + 9x+ 17)(x5 + 5x4+

13x3 + 7x2 + 12x+ 11) mod 19

Therefore, we can take q1 = 67, q2 = 17, q3 =
19, and as a consequence we conclude that even
for such a simple example with only 3 triangles,
the Shortest Descending Path problem is not solv-
able within the ACMQ.

Theorem 3.1 The shortest descending path
problem cannot be solved exactly within the
ACMQ.

Figure 3 shows a numeric approximation of the
SDP, obtained for t1 ≈ 0.47 and t2 ≈ 0.23.

4 Conclusions

We analyzed the SDP problem and showed that
even for very simple constructions with only three
triangles (in fact, the problem remains difficult
with at least three triangles), it is impossible to
obtain an exact formula under ACMQ. While the
general computational complexity of the Short-
est Descending Path problem remains unknown,

our results suggest that determining its complex-
ity may be related to algebraic complexity. Fu-
ture research could explore this problem under a
computational model over the reals. In addition,
we may want to analyze the effectiveness of ap-
proximation algorithms under ACMQ, and iden-
tify other families of polyhedral terrains for which
exact algorithms exist.
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