Metric representation of graphs

Mercè Mora^{*1} and M. Luz Puertas^{†2}

¹Universitat Politècnica de Catalunya, Barcelona, Spain ²Universidad de Almería, Almería, Spain

The metric representation of a vertex u in a connected graph G with respect to an ordered vertex subset $W = \{\omega_1, \ldots, \omega_n\} \subseteq V(G)$ is the vector $r(u|W) = (d(x, \omega_1), \ldots, d(x, \omega_n))$ of distances from u to the vertices of W. The subset W is a resolving set of G if $r(u|W) \neq r(v|W)$, for every $u, v \in V(G)$ with $u \neq v$. Thus, a resolving set with n elements provides a set S of metric representation vectors, where $S \subset \mathbb{Z}^n$ and its cardinality is equal to the order of the graph.

Resolving sets are used to distinguish the vertices of a graph and have become a topic of much interest in the graph theory community due to its applications in diverse areas.

In this work, we are interested in the reverse problem, that is, given a finite subset $S \subset \mathbb{Z}^n$, determining whether there exist a graph G and a resolving set Wof G such that S is the set of metric representations of the vertices of G with respect to W. In such a case, we say that S is *realizable* and (G, W) is a *realization* of S.

For example, different realizations of the set $S = \{(0,3), (3,0), (1,2), (2,1), (2,3), (3,2), (1,4), (4,1), (2,5), (5,2), (3,4), (4,3), (4,5), (5,4)\}$ are depicted in Figure 1, where black vertices are those in W.

Figure 1: Three realizations of the set S.

Our main goal consists of characterizing realizable sets S of \mathbb{Z}^n and determining which properties of the graphs realizing a subset S can be derived from the set S of metric coordinates.

The strong product of paths plays an important role in our approach, since, roughly speaking, every graph realizing a set $S \subseteq \mathbb{Z}^n$ can be viewed as a subgraph of a strong product of n paths by identifying the vertex u with the point r(u|W) of an n-dimensional grid. Some questions were already solved in [1]. Concretely, realizable sets were characterized and the uniqueness of the realization was discussed. The main result is the following, where x_i denotes the *i*-th coordinate of any $x \in \mathbb{Z}^n$.

Theorem 1 [1] A subset $S \subset \mathbb{Z}^n$ is realizable if and only if the following properties hold.

- i) If $x \in S$, then $x_i \ge 0$ for every $i \in [n]$. Moreover, x has at most one coordinate equal to zero.
- ii) For every $i \in [n]$, there exists exactly one element $x \in S$ such that $x_i = 0$.
- iii) If $x \in S$ and $x_i > 0$ for $i \in [n]$, then there exists $y \in S$ satisfying $y_i = x_i 1$ and $\max_{j \in [n]} \{ |y_j x_j| \} \leq 1$.

Recently, we have characterized the sets $S \subset \mathbb{Z}^n$ that can be realized by a tree. In such a case, there is only one tree that realizes S and we have also characterized when this tree is the only realization of S.

Theorem 2 If $S \subseteq \mathbb{Z}^n$ is a realizable set, then there exists a realization (T, W) of S such that T is a tree if and only if the following conditions hold

- i) for every $x, y \in S$, if $\max_{i \in [n]} |x_i y_i| = 1$, then $y_j \neq x_j$ for every $j \in [n]$;
- ii) for every $x \in S_0$ and every $j \in [n]$ such that $x_j > 0$, there exists exactly one element $y \in S_0$ such that $\max_{i \in [n]} |x_i y_i| = 1$ and $y_j = x_j 1$.

Proposition 3 If $S \subseteq \mathbb{Z}^n$ is realizable by a tree T, then only T realizes S if and only if $\max_{i \in [n]} |x_i - y_i| > 1$ for every pair of different vertices $x, y \in S_0^*$, where $S_0^* = \{x \in S_0 : (x_1 + 1, \dots, x_n + 1) \in S\}.$

In future work, we want to analyse the structure and more properties of graphs that can be described from the set of metric coordinates.

References

 M. Mora, M.L. Puertas, On the metric representation of the vertices of a graph, Bull. Malays. Math. Sci. Soc. 46 (2023), #187.

 $^{^{*}\}rm{Email:}$ merce.mora@upc.edu. Research supported by grants Gen. Cat. DGR 2017SGR1336 and PID2023-150725NB-I00 funded by MICIU/AEI/10.13039/501100011033.

 $^{^\}dagger Email:$ mpuertas@ual.es. Research supported by grants PID2023-150725NB-I00 and PID2021-123278OB-I00 funded by MICIU/AEI/10.13039/501100011033