Chromatic quasisymmetric functions for signed graphs

Jean-Christophe Aval^{*1} and Raquel Melgar^{†2}

^{1,2}(LaBRI) Laboratoire Bordelais de Recherche en Informatique

1 Classical graph coloring

A proper coloring of a simple graph G = (V, E) is a map κ from the vertex set $V = \{v_1, ..., v_d\}$ to the positive integers $\mathbb{N} = \{1, 2, ...\}$ such that adjacent vertices are assigned different colors. Consider the set of commuting variables $x = (x_1, x_2, ...)$ the chromatic symmetric function of G is defined as

$$X_G(x) := \sum_{\kappa \text{ proper}} x^{\kappa} = \sum_{\kappa \text{ proper}} x_{\kappa(1)} \cdots x_{\kappa(v_d)}.$$
 (1)

It has generated extensive research since its introduction in [3]. It is clear that $X_G \in Sym$, where Symis the algebra of symmetric functions. A remarkable feature of this function is that it specializes in the chromatic polynomial $\chi_G(k)$.

In [1] Ellzey introduced a refinement of Stanley's chromatic symmetric function for directed graphs. Given a simple directed graph $\overrightarrow{G} = (V, E)$ the chromatic quasisymmetric function of \overrightarrow{G} is

$$X_{\overrightarrow{G}}(x,t) := \sum_{\kappa \text{ proper}} t^{asc(\kappa)} x^{\kappa}$$
(2)

where $asc(\kappa) := \#\{(u, v) \in E : \kappa(u) < \kappa(v)\}$. It is straightforward that Stanley's invariant is recovered by evaluating this function in t = 1. Also, it is easy to check that $X_{\overrightarrow{C}}(x,t)$ lies in QSym[t] where QSym is the algebra of quasisymmetric functions. The importance of the algebra QSym in algebraic combinatorics is well-known.

2 Signed graph coloring

A signed graph is a simple graph in which each edge has either a + or a – associated with it, then we call this edges positive edges or negative edges respectively. In [4] Zaslavsky defined what a proper coloring of a signed graph is. Given a signed graph Σ with vertex set V, a proper coloring of Σ is a map $\kappa : V \to \mathbb{Z}$ verifying $\kappa(u) \neq \epsilon \kappa(v)$ if $\{u, v\}$ is an edge of Σ and ϵ is its sign. An analog of Stanley's chromatic symmetric function in the framework of signed graph coloring was introduced in [2]. Given a signed graph on d vertices Σ , consider the set of commuting variables $\mathbf{x} := (..., x_{-1}, x_0, x_1, ...)$, then the chromatic signed symmetric function of Σ is

$$X_{\Sigma}(\mathbf{x}) := \sum_{\kappa \text{ proper}} \mathbf{x}^{\kappa} = \sum_{\kappa \text{ proper}} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_d)}.$$

This function is invariant under the action of the signed symmetric group $S\mathfrak{S}$ on its variables, in other words, it belongs to SSym, the algebra of signed symmetric functions. Zaslavsky also developed a theory for the orientation of signed graphs and proves that there exists a bijection between the acyclic orientations of a signed graph on d vertices Σ and the connected components of the complement of an hyperplane arrangement $H_{\Sigma} \in \mathbb{R}^d$. This beautiful result generalizes the well-known analog result for the classical case.

The aim of this paper is, taking account of this bijection define an invariant $X_{\overrightarrow{\Sigma}}(\mathbf{x},t)$ for signed directed graphs $\overrightarrow{\Sigma}$ that refines $X_{\Sigma}(\mathbf{x})$ in the same way as $X_{\overrightarrow{G}}(x,t)$ refined $X_G(x)$. In other words, we want to fill the gap in the following table and to study the naturally arising algebra.

	undirected	directed
G	$X_G(x) \in Sym$	$X_{\overrightarrow{G}}(x,t) \in QSym[t]$
Σ	$X_{\Sigma}(\mathbf{x}) \in SSym$?

We define bases for this algebra, propose a formula for calculating the invariant and present some symmetry results.

References

- B. Ellzey, A directed graph generalization of chromatic quasisymmetric functions, preprint, 2017, arXiv:1709.00454.
- [2] M. Kuroda, S. Tsujie, Chromatic Signed-Symmetric Functions of Signed Graphs, preprint, 2021, arXiv:2101.03018.
- [3] R.P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Mathematics 111(1) (1995), 166-194.
- [4] T.Zaslavsky, Signed graphs, Discrete Applied Mathematics 4(1) (1982), 47-74.

^{*}Email: jean-christophe.aval.1@u-bordeaux.fr. Research supported by the ANR (Combiné Project ANR-19-CE48-0011)

 $^{^{\}dagger}\rm{Email:}$ raquel.melgar@labri.fr . Research supported by the ANR (Combiné Project ANR-19-CE48-0011)