
XXI Spanish Meeting on Computational Geometry, Santander, June 30-July 2, 2025

Ordered Yao graphs: maximum degree,
edge numbers, and clique numbers
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Abstract

For a positive integer k and an ordered set of n points
in the plane, define its k-sector ordered Yao graphs
as follows. Divide the plane around each point into
k equal sectors and draw an edge from each point to
its closest predecessor in each of the k sectors. We
analyze several natural parameters of these graphs.
Our main results are as follows:

I Let dk(n) be the maximum integer so that for
every n-element point set in the plane, there exists
an order such that the corresponding k-sector
ordered Yao graph has maximum degree at least
dk(n). We show that dk(n) = n − 1 if k = 4
or k ≥ 6, and provide some estimates for the
remaining values of k. Namely, we show that
d1(n) = Θ(log2 n); 1

2 (n− 1) ≤ d3(n) ≤ 5
⌈
n
6

⌉
− 1;

2
3 (n− 1) ≤ d5(n) ≤ n− 1;

II Let ek(n) be the minimum integer so that for
every n-element point set in the plane, there exists
an order such that the corresponding k-sector
ordered Yao graph has at most ek(n) edges. Then
ek(n) =

⌈
k
2

⌉
· n− o(n).

III Let wk be the minimum integer so that for every
point set in the plane, there exists an order such
that the corresponding k-sector ordered Yao graph
has clique number at most wk. Then dk2 e ≤ wk ≤
dk2 e+ 1.

All the orders mentioned above can be constructed
effectively.
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1 Introduction and main results

For a point set in the plane, define its Yao graphs in
the following way. Fix an integer k ≥ 1, and divide
the plane around each point into k equal sectors such
that one boundary ray is horizontal and directed to
the right. Then draw an edge from each point to its
closest neighbor in each of the k sectors, see Figure 1,
top. Let us call the resulting directed graph a k-sector
Yao graph. Observe that the outdegree of every vertex
is at most k, and is strictly smaller if some of the
corresponding sectors are empty, as in Figure 1, top.

The notion of an ordered Yao graph is closely related.
In this case, the vertices appear one by one, and each
new vertex has precisely one outgoing edge towards
its closest predecessor, see Figure 1, bottom. To make
this notion well-defined, we also need to specify how to
break the ties when a point lies on a sector-bounding
ray or if two points are at the same distance from a
third one and within the same sector of it. One way
for the former is to regard each sector-bounding ray
as a part of the next sector, say, in a counterclockwise
direction; for the latter, it is natural to order the points
with the same distance from p and within the same
sector of p in, say, a counterclockwise order around
p (so the one on the sector boundary is the ‘closest’).
To simplify the arguments, all point sets considered
are in general position, i.e., neither of the scenarios
described above occurs. Also, whenever defining an
ordering that applies for all point sets, it is legitimate
to assume that the first condition is true, otherwise
we may rotate the set by a sufficiently small angle.

Yao graphs were introduced by Yao [22], while their
ordered variants are due to Bose, Gudmundsson, and
Morin [5] (defined for the slightly different variant
called theta graphs). In modern Computational Ge-
ometry, these graphs are used to construct geometric
spanners with nice additional properties, such as log-
arithmic maximum degree and logarithmic diameter.
In [7], Bose et al. showed that the stretch factor of k-
sector Yao graphs is at most 1/(cos(2π/k)−sin(2π/k))
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Figure 1: Unordered (t) and ordered (b) 3-sector Yao
graphs on the same set of six points.

for k ≥ 9, which has been improved several times later,
for example in [3]. In [5], the authors also study the
stretch factor for the ordered variant. Sparse graphs
with a small dilation have also been studied in [4, 6, 7],
among others.

Note that Yao graphs in the special case k = 1
are the well-known Nearest Neighbor Graphs with
numerous applications in Computational Geometry
such as computing geometric shortest paths, spanners,
well-separated pairs, and approximate minimum span-
ning trees in, see the survey [21], books [12, 19], or
monograph [18]. The ordered variant of the Near-
est Neighbor Graphs was introduced in [1, 13] in the
context of dynamic algorithms.

A systematic study of the basic combinatorial prop-
erties of Nearest Neighbor Graphs dates back at least
to the classical paper [14] by Eppstein, Paterson, and
Yao in which, among other, they made the following
simple observation: two edges with the same endpoint
meet at an angle of at least π/3, and thus the maxi-
mum indegree is bounded from above by 6 for planar
point sets. However, it is not hard to see that for
any k > 1, the maximum indegree of a k-sector Yao
graph can be arbitrarily large. It is an open problem
in the field to determine whether every point set P
admits an order such that the maximum indegree of
the corresponding ordered Yao graph is bounded from
above by some constant ck, independent of the size
of P , see [5]. To get a better understanding of how
degrees behave in these graphs, here we attempt to
maximize the maximum indegree. We addressed the
special case k = 1 in a separate paper [2].

Definition 1 For k, n ∈ N, let dk(n) be the maximum
indegree one can always guarantee in an n-vertex k-
sector ordered Yao graph by picking a suitable order.
In other words, dk(n) is the maximum integer satis-
fying the following property. For every n-point set in
the plane, there exists an order such that the corre-
sponding k-sector ordered Yao graph has maximum
indegree at least dk(n).

Theorem 2 The following bounds hold:

1. d1(n) = Θ(log n);

2. 1
2 (n− 1) ≤ d3(n) ≤ 5

⌈
n
6

⌉
− 1;

3. 2
3 (n− 1) ≤ d5(n) ≤ n− 1;

4. dk(n) = n − 1 otherwise, that is, if k = 2, 4 or
k ≥ 6.

Next we study the number of edges of a k-sector
ordered Yao graph. This is trivial for k = 1. Indeed,
for every n-point set P and every order of it, all the
vertices of the corresponding ordered Yao graph, but
the first one, have precisely one outgoing edge, and
thus the graph always contains n− 1 edges. Assume
therefore that k ≥ 2. Our next result determines
the maximum number of edges of a k-sector ordered
Yao graph that we can always guarantee by picking
a suitable order. We also obtain a ‘complementary’
result regarding the maximum number of edges that
we sometimes cannot avoid regardless of the order we
take.

Definition 3 For k, n ∈ N, let Ek(n) be the maxi-
mum number of edges one can always guarantee in
an n-vertex k-sector ordered Yao graph by picking a
suitable order. In other words, Ek(n) is the maximum
integer satisfying the following property. For every
n-point set in the plane, there exists an order such
that the corresponding k-sector ordered Yao graph
contains at least Ek(n) edges.

Theorem 4 For k 6= 3, we have Ek(n) = 2n− 3 for
n ≥ 3, and E3(n) = 2n− 4 for n ≥ 4.

Definition 5 For k, n ∈ N, let ek(n) be the maximum
number of edges one sometimes cannot avoid in an
n-vertex k-sector ordered Yao graph regardless of the
picked order. In other words, ek(n) is the maximum
integer satisfying the following property. There exists
an n-point set in the plane such that for every order,
the corresponding k-sector ordered Yao graph contains
at least ek(n) edges.

Theorem 6 For each fixed k ≥ 2, we have ek(n) =
n ·
⌈
k
2

⌉
− o(n) as n → ∞. Moreover, if k ≥ 4, then

n ·
⌈
k
2

⌉
−O

(
k3 ·
√
n
)
≤ ek(n) ≤ n ·

⌈
k
2

⌉
− Ω (k ·

√
n).
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Finally, we study the clique number of the the k-
sector ordered Yao graph, defined as the size of its
largest subset of pairwise adjacent vertices, where we
omit the orientation of the edges. As before, there
is nothing to study if k = 1. Indeed, all the vertices
but the first one have precisely one outgoing edge,
and thus the Yao graph is triangle-free, and in fact,
it is not hard to show that the Yao graph is always
acyclic. So we can assume that k ≥ 2. The following
two ‘complementary’ results determine the maximum
size of a clique that we can always achieve by taking
a suitable order of the point set, and estimate the
maximum size of a clique that we sometimes cannot
avoid regardless of the order we take.

Definition 7 For k, n ∈ N, let Wk(n) be the maxi-
mum clique number one can always guarantee in an
n-vertex k-sector ordered Yao graph by picking a suit-
able order. In other words, Wk(n) is the maximum
integer satisfying the following property. For every
n-point set in the plane, there exists an order such
that the corresponding k-sector ordered Yao graph
contains a clique of size Wk(n).

Theorem 8 For k ≥ 2 and n ≥ 3 we have Wk(n) = 3
with the only exception being W3(3) = 2.

Definition 9 For k, n ∈ N, let wk(n) be the maxi-
mum clique number one sometimes cannot avoid in an
n-vertex k-sector ordered Yao graph regardless of the
picked order, and wk = supn wk(n). In other words,
wk is the maximum integer satisfying the following
property. There exists point set in the plane such that
for every order, the corresponding k-sector ordered
Yao graph contains a clique of size wk.

Theorem 10 For k ≥ 2 we have dk2 e ≤ wk ≤ d
k
2 e+1.

It is not hard to see that, as a function of n, wk(n)
is monotonically non-decreasing and bounded from
above by k + 1, the maximum outdegree increased by
1. Hence, wk(n) = wk for all sufficiently large n.

Remark. Due to the page limit, all the proofs of the
aforementioned results are presented in the Appendix.

Related work. In this paper, we define closest neigh-
bors based on the Euclidean distance. However, there
are alternative ways. For instance, one may want
to minimize the distance between a point and the
orthogonal projection of its neighbor on the bound-
ing ray of the hosting sector (or, in another variant,
on the bisector of the hosting sector). The resulting
graphs, usually referred to in the literature as θ-graphs,
were introduced by Clarkson [9] and independently by
Keil [17], while their ordered variants are due to Bose,
Gudmundsson, and Morin [5]. The spanning ratio of

these graphs is at most 1/(1 − 2 sin(π/k)) for k ≥ 7
and any order of the point set [20], see also [4, 10, 11].

2 Concluding remarks

Our Theorems 2, 6 and 10 leave room for improve-
ments. For the first, it would be interesting to find
out whether our simple bounds 1

2 (n− 1) ≤ d3(n) and
d5(n) ≤ n− 1 are tight or not.

In the setting of Theorem 10, we suspect that the
upper bound wk ≤

⌈
k
2

⌉
+ 1 may be tight since we

confirmed it for k = 3, 4. However, we also showed that
wk
(⌈
k
2

⌉
+ 1
)

=
⌈
k
2

⌉
for k ≥ 4. In other words, a point

set for which a clique of size
⌈
k
2

⌉
+ 1 is unavoidable

contains more than
⌈
k
2

⌉
+ 1 points.
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A Notation

We assume that one of the sector-bounding rays of
the k-sector Yao graph is a horizontal ray directed to
the right and call it `0, and the remaining rays are
`1, `2, ..., `k−1 in a counterclockwise direction from `0.
Denote the sectors between these rays by s0, s1, ..., sk−1
in counterclockwise order. For instance, s0 is the sector
bounded by `0 and `1, and so forth. Let us call the
antipodal rays −`0, . . . ,−`k−1 the dual rays. Drawn
from a common origin, they separate the plane into
k dual sectors labeled by −s0, ...,−sk. It is easy to
check that p belongs to the ith sector of q if and only
if q belongs to the ith dual sector of p, see Figure 2.

The notation AnyOrder(Q) stands for an arbitrary
order of the point set Q.

q

p

`0

`1

`2

−`0

−`1

−`2

Figure 2: p lies in the first sector of q if and only if
q lies in the first dual sector of p. Or to be short,
p ∈ s0 (q) and q ∈ −s0 (q).

B Maximum degree

Let us briefly outline the strategy of the proof. First,
note that the equality d1(n) = Θ(log n) is immediate
from Theorem 1 and Theorem 2 in [2]. So we subse-
quently assume that k > 1. In Section B.1, we present
a simple order yielding that dk(n) = n− 1 for all even
k, and that dk(n) ≥ 1

2 (n − 1) for all odd k ≥ 3. In
Section B.2, we give another simple order yielding that
dk(n) = n − 1 for all k ≥ 6. A combination of these
two orders implies that d5(n) ≥ 2

3 (n− 1). Finally, in
Section B.3, we prove that d3(n) ≤ 5

⌈
n
6

⌉
− 1 via an

explicit construction. Together these results complete
the proof of Theorem 2.

B.1 Orthogonal enumeration

Lemma 11 Let Q be a point set contained in t = bk2 c
cyclically consecutive dual sectors of a point p. Then
there exists an ordering such that the corresponding k-
sector Yao graph contains all the directed edges q → p
for q ∈ Q.
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Proof. Due to the symmetry of this statement, it is
sufficient to prove it only for the points from dual
sectors between −`0 and −`t. Let q1, . . . , qm be
these points labeled in nondecreasing order of their y-
coordinates. We claim that in the k-sector Yao graph
corresponding to the ordering

p, q1, . . . , qm,AnyOrder(P \ {p, q1, . . . , qm}),

each qi is adjacent to p. Indeed, all the previous
qj , j < i, lie below qi by construction. At the same
time, p belongs to one of the first t sectors of qi, and
thus p lies above qi since t ≤ k

2 . So p is the unique
point in one of the first t sectors of qi, and thus qi → p
is an edge. �

Proposition 1 For all n ∈ N, we have dk(n) = n− 1
if k is even, and dk(n) ≥ 1

2 (n− 1) if k > 1 is odd.

Proof. Let p be the highest point of P . Note that
t = bk2 c of its dual sectors that lie in the upper half-
plane are empty by construction.

If k is even, then the remaining n − 1 points are
distributed between t dual sectors in the lower half-
plane, and Lemma 11 implies that all of them can be
adjacent to p under a suitable ordering. Therefore,
dk(n) = n− 1, as desired.

If k is odd, the remaining n−1 points are distributed
between t+ 1 dual sectors intersecting the lower half-
plane. By the pigeonhole principle, either the first t or
the last t contain at least half of the points. Moreover,
all of them can be adjacent to p under a suitable
ordering according to Lemma 11. Therefore, dk(n) ≥
1
2 (n− 1), as desired. �

B.2 Radial enumeration

Proposition 2 For all n ∈ N, k ≥ 6, we have dk(n) =
n− 1.

Proof. Let P be any point set and p be an arbitrary
point of P . Label the remaining points q1, . . . , qn−1
such that their Euclidean distances to p are nonincreas-
ing. We claim that the indegree of p in the k-sector
Yao graph under the ordering p, q1, . . . , qn−1 equals
n − 1. Assume the contrary, namely that for some
j < i, qi is adjacent to qj instead of p. This implies
that p and qj belong to the same k-sector of qi, and
thus ]pqiqj < 2π/k ≤ π/3. Therefore, ∠pqiqj is not
a largest angle of the triangle qipqj and so pqj is not
a longest side. Since |qip| ≤ |pqj | by construction,
we conclude that qiqj is a longest side of the triangle.
However, in this case qi should be adjacent to p instead
of qj , a contradiction. �

Proposition 3 For all n, we have d5(n) ≥ 2
3 (n− 1).

Proof. Let P be any point set and p be the highest
point of P , so for k = 5, −s3(p) and −s4(p) are empty.
Let P0, P1, P2 be sets of the remaining points in−s0(p),
−s1(p) and −s2(p), respectively, and a0, a1, a2 be their
cardinalities, see Figure 3.

−s0

−s1

−s2

−s3

−s4

P0

P1

P2

p−`0

−`1
−`2

−`3
−`4

Figure 3: Five dual sectors of p; the first two are
empty.

Lemma 11 implies that there exists an ordering
such that each vertex of P0 ∪ P1 is adjacent to p.
Besides, there exists an ordering such that each vertex
of P1 ∪ P2 is adjacent to p. A similar statement for
the union P0 ∪ P2 will complete the proof. Indeed,
since a0 + a1 + a2 = n − 1, at least one of the sums
a0 + a1, a1 + a2, a2 + a0 is at least 2

3 (n − 1) by the
pigeonhole principle.

Let q1, . . . , qm be the points of P0 ∪P2 labeled such
that their (Euclidean) distances to p do not increase
anywhere, where m = a2 + a0. We claim that each of
them is adjacent to p in the 5-sector Yao graph under
the ordering

p, q1, . . . , qm,AnyOrder(P1).

As in the proof of Proposition 2, assume the contrary,
namely that for some j < i, qi is adjacent to qj instead
of p. First, suppose that qi and qj belong to different
dual 5-sectors of p. This yields that ]qipqj > 2π

5 >
π
3 . As earlier, we conclude that ∠qipqj is not the
smallest angle of the triangle qipqj and qiqj is not its
shortest side. Hence, |qip| < |qiqj | and thus qi should
be adjacent to p instead of qj , a contradiction.

Second, suppose that qi and qj belong to the
same dual 5-sectors of p, say, qi, qj ∈ P2. Then
qj ∈ −s2(qi) ∩ s2(p). This intersection is a paral-
lelogram with angles 2π

5 < π
2 at the vertices qi and p.

Therefore, qip is the diameter of this parallelogram,
and thus |qip| > |pqj |, a contradiction again. �

B.3 Upper bound on d3(n)

Since d3(n) is clearly nondecreasing as a function of
n, assume without loss of generality that n = 6m for
some m ∈ N and construct an n-element point set
as follows. Pick a very small angle, say, α = π

10m .
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For 1 ≤ i ≤ m, let ai, bi, ci, di, ei, and fi be points
on the unit circle whose angles with the x-axis equal
to iα, −iα, 2π

3 + iα, 2π
3 − iα, 4π

3 + iα, and 4π
3 − iα,

respectively, see Figure 4 (recall that k = 3). A small
perturbation brings it in general position.

a1

...

am

b1
..
.

bm

c1
...cm

d1
... dm

e1 ... em

f1

...

f3

Figure 4: Both cm and ai belong to the first sector of
f1, both f1 and ai belong to the third sector of cm,
cmf1 is the shortest side of the triangle aicmf1.

To show that d3(n) ≤ 5
⌈
n
6

⌉
− 1, it suffices to show

that for every ordering, the indegree of each vertex in
the 3-sector Yao graph does not exceed (n− 1)−m.
Due to the symmetry of this configuration, it suffices
to show this only for ai, 1 ≤ i ≤ m. Pick 1 ≤ j ≤ m
and consider a triangle aicm+1−jfj . Note that both
cm+1−j and ai belong to the first sector of fj , and
that both fj and ai belong to the third sector of
cm+1−j , see Figure 4. Moreover, it is not hard to
see that cm+1−jfj is the shortest side of the triangle
aicm+1−jfj . Therefore, among cm+1−j and fj , the
vertex that appears later cannot be adjacent to ai.
Since this holds for all 1 ≤ j ≤ m, we conclude that
the indegree of ai does not exceed (n− 1)−m under
each ordering, as desired.

C Clique numbers

C.1 Maximizing the largest clique: proof of The-
orem 8

To prove the upper bound, consider a set P of n points
on a generic line (not parallel to any of the `i). It
is easy to see that each point contains all the others
in (at most) two sectors, and thus its outdegree is at
most two regardless of the ordering. Hence, the clique
number of the k-sector ordered Yao graph is at most 3.

For k = n = 3, take a triangle centered at the origin
and whose vertices are on `0, `1 and `2, see Figure 5.
It it easy to see that for every order, the corresponding
3-sector ordered Yao graph contains only two edges,
and thus it is triangle-free.

Now we prove the lower bounds. Our goal is to
find three points p1, p2, p3 in an arbitrary point set P
such that one of them, say p3, contains the other two

o

Figure 5: A set with a triangle-free 3-sector ordered
Yao graph.

in different k-sectors. For such a triple, the k-sector
ordered Yao graph corresponding to the order

p1, p2, p3,AnyOrder(P \ {p1, p2, p3})

contains a triangle p1p2p3.

First, consider the case when k is even. Among 3
arbitrary points, there is one, which is neither topmost,
nor bottommost and thus does not contain the other
two in the same k-sector, and we are done.

Similarly, if k ≥ 6, then an arbitrary triangle from
P has one angle at least π

3 ≥
2π
k , and thus its vertex

contains the other two in different k-sectors.

If k = 5, we take three arbitrary points from P and
translate the angles of their triangle ∆ to a common
origin, which divides the plane into 3 ‘cones’ and 3
‘complementary cones’, see Figure 6. By the pigeonhole
principle, either one of the cones contains at least one
of the `i’s, or at least one of the dual cones contains
two. In the first case, we are done, because one of the
three points has the other two in different 5-sectors.
In the second case, we are also done, since one of the
angles of ∆ is larger than 2π

5 , and thus it must contain
an `i.

Finally, suppose that k = 3, n ≥ 4, and each point
contains the others in one 3-sector. By the pigeonhole
principle, some two of the points contain all the others
in the same 3-sector, say, in s0. However, for all
p1, p2 ∈ P , if p2 ∈ s0 (p1), then p2 is higher than p1,
and thus p1 /∈ s0 (p2). This contradiction completes
the proof.

C.2 Minimizing the largest clique: proof of The-
orem 10

The upper bound is trivial: since the last
⌊
k
2

⌋
of the

k-sectors corresponding to each vertex belong to the
lower half-plane, they do not contain the preceding
points in the top-to-bottom ordering. Hence, all ver-
tices have outdegree at most

⌈
k
2

⌉
in the k-sector or-

dered Yao graph, and so the size of any clique is at
most

⌈
k
2

⌉
+ 1.

For the lower bound, we construct a set P of
⌈
k
2

⌉
points in the plane such that every point contains all
the others in pairwise distinct k-sectors. It is clear
that no matter how we order these points, the cor-



XXI Spanish Meeting on Computational Geometry, Santander, June 30-July 2, 2025

p1

p2

p3

p1

p2

p3

> 2π
5

> 2π
5

Figure 6: Illustration for the k = 5 case of Theorem
8. On the top, we can see an occurrence of the first
subcase when there are cones (colored in grey) which
contain at least one of the `i. On the bottom, we can
see an occurrence of the second subcase when there is
a complementary cone containing two of the `i, which
also results in the cone on the opposing side containing
an `i, or in other words, one of the pi seeing the other
two of the pi in different sectors.

responding k-sector ordered Yao graph would be a
clique.

To formally describe this construction, we utilize
the standard bijection between the plane and the set
of complex numbers C. Let z be the 2k-th root
of 1 with the smallest positive argument, that is
z = cos πk + i · sin π

k . Note that the directions of
the rays `0, `1, ..., `k−1 are z0, z2, ..., z2k−2, respectively.
Besides, note that the vector zj2 − zj1 = zj2 + zj1+k

has direction z(j1+j2+k)/2 for all 0 ≤ j1 < j2 ≤ 2k.

In case of even k, put pj = z4j for 0 ≤ j < k
2 . It is

easy to verify that for each j1, the directions of the
vectors pj2 − pj1 , 0 ≤ j2 <

k
2 , j2 6= j1, coincide with

cyclically consecutive sector boundaries. Rotating
this configuration by a sufficiently small angle about
the origin moves these directions into the interiors
of distinct cyclically consecutive k-sectors. That is
P = {pj · zϕ : 0 ≤ j < k

2} is the desired configuration
for a sufficiently small ϕ.

In case k = 2m+1 and m is odd, we put pj = z4j for
0 ≤ j < m and pm = z2k−3. We claim that for each
fixed 0 ≤ j1 < m, the points pj2 , 0 ≤ j2 ≤ m, j2 6= j1
belong to the interiors of pairwise distinct k-sectors
of pj1 . Indeed, the direction of the vector pm − pj1
is z2j1+k+(k−3)/2, and the latter exponent is an odd
integer. Therefore, pm lies on the bisector of some
k-sector of pj1 . Observe that p0

pm
= pm

pm−1
= z3. Hence,

we have ]p0pj1pm = ]pmpj1pm−1 = 3π
2k , which equals

3
4 of the k-sector angle. Thus pm−1, pm, and p0 belong
to 3 distinct cyclically consecutive k-sectors of pj1 . (If
j1 = 0 or j1 = m − 1, then we only claim that the
remaining two points belong to distinct k-sectors of
pj1 .) Similarly,

pj2+1

pj2
= z4 implies that ]pj2pj1pj2+1 =

2π
k for all 0 ≤ j2 < m− 1, j2 6= j1, j2 + 1 6= j1, which

equals the full k-sector angle. Therefore, all the points
pj2 , 0 ≤ j2 ≤ m, j2 6= j1 belong to the interiors of
pairwise distinct k-sectors of pj1 , as claimed. Note
that a rotation about the origin by a sufficiently small
angle does not affect this property.

The last point pm stands out in the sequence, and
requires a separate analysis. Observe that the direction
of the vector pj − pm is z2j+(k−3)/2, and the latter
exponent is an even integer for all 0 ≤ j < m. Hence,
all the points pj , 0 ≤ j < m, lie on the boundaries
of cyclically consecutive k-sectors of pm. Rotating
this configuration by a sufficiently small angle about
the origin moves these points into the interiors of
distinct cyclically consecutive k-sectors of pm. That is,
P = {pj · zϕ : 0 ≤ j ≤ m} is the desired configuration
for a sufficiently small ϕ.

The case k = 2m+ 1 and m is even is very similar
to the previous one with the only difference being the
multiplication by z. In other words, we put pj = z4j+1

for 0 ≤ j < m and pm = z2k−2. As before, we
claim that for each fixed 0 ≤ j1 < m, all the points
pj2 , 0 ≤ j2 ≤ m, j2 6= j1 belong to the interiors of
pairwise distinct k-sectors of pj1 . Indeed, the direction
of the vector pm−pj1 is z2j1+k+(k−1)/2, and the latter
exponent is an odd integer. Therefore, pm lies on the
bisector of some k-sector of pj1 , and the rest of the
claim’s proof goes as before. Finally, the direction
of the vector pj − pm is z2j+(k−1)/2, and the latter
exponent is an even integer for all 0 ≤ j < m. Hence,
all the points pj , 0 ≤ j < m, lie on the boundaries of
cyclically consecutive k-sectors of pm. As mentioned
above, the set P = {pj · zϕ : 0 ≤ j ≤ m} obtained by
a sufficiently small rotation about the origin satisfies
the desired condition.

D Edge numbers

For any point set and any order, the number of edges
is the sum of the outdegrees of the points. And as we
know, the outdegree of a point is simply the number
of non-empty k-sectors at the moment of its addition.
Thus, this is the only quantity we focus on in this
section as the distances between points are irrelevant
in this aspect. This also means that any statement for
the edge number of ordered Yao graphs could also be
stated for example for ordered theta graphs.
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Figure 7: Examples for k = 9, 11, 12

D.1 Maximizing the number of edges: proof of
Theorem 4

The lower bound is a simple corollary of Theorem 8.
Indeed, if k 6= 3 and n ≥ 3, then by Theorem 8, in
every n-point set, there exists a point pn that does not
contain all the others in a single k-sector. Therefore,
if this point appears the last, then its outdegree in the
corresponding k-sector Yao graph would be at least 2.
Delete this point from our set and recursively repeat
the same argument while there are at least 3 points
left. No matter how we order the remaining 2 points,
the second one is adjacent to the first. As a result,
we construct an ordering such that the corresponding
k-sector ordered Yao graph contains at least 0 + 1 +
2 · (n− 2) = 2n− 3 edges, as desired. The case k = 3
is similar, with the only difference that we need at
least 4 points left to recursively apply Theorem 8.
As a result, we construct an ordering such that the
corresponding 3-sector ordered Yao graph contains at
least 0 + 1 + 1 + 2 · (n− 3) = 2n− 4 edges, as desired.

As for the upper bound, observe that for n points
on a line (not parallel to the `i, so the construction
is in general position), the two endpoints both have
one sector which contains all the other points, while
the rest has two, thus no ordering can generate more
than 2n− 3 edges, regardless of the value of k ≥ 2. In
case k = 3, Figure 10 provides a better construction:
whatever ordering we take, A, B and C have outdegree
at most 1, while all other points have outdegree at
most 2. Combined with the fact that the first point
always has outdegree 0, this gives an upper bound of
2n− 4 on the number of edges.

A

B

C

Figure 8: The points of the construction along with
their incident rays.

D.2 Minimizing the number of edges: proof of
Theorem 6

As noted earlier in the proof of Theorem 10, the upper
bound ek(n) ≤ n ·

⌈
k
2

⌉
is trivial. Indeed, the last

⌊
k
2

⌋
of the k-sectors corresponding to each vertex belong
to the lower half-plane, and so they do not contain
the preceding points in the top-to-bottom ordering.
Hence, all vertices have outdegree at most

⌈
k
2

⌉
in the

corresponding k-sector ordered Yao graph, and so the
graph has at most n ·

⌈
k
2

⌉
edges in total. For k = 2

this upper bound is trivially sharp for all P . Thus, in
the following subsections, we assume that k ≥ 3.

D.2.1 Upper bound: ek(n) ≤ n ·
⌈
k
2

⌉
−d
√
ne ·
⌊
k+1
4

⌋
for k ≥ 3

q1

P1 = ∅

q2

P2

q3

P3 = ∅
q4

P4

q5

P5

Figure 9: In the left subfigure, the points of Q are
denoted by red and the `0 (qi) and the `d k

4 e are also

drawn. The point sets Pi are in between qi and qi+1.
In the right subfigures, we can see the three cases of
what a newly added point “sees”: the sectors in grey
are possibly non-empty, while the sectors in white are
empty. The third one represents a qi.

For any point p, let x(p) and y(p) be the Cartesian
coordinates of p. Moreover, we consider the intersec-
tion of the x-axis with the line passing through p along
the direction of `d k

4 e, and denote the x-coordinate of

this intersection as x′(p). Note that the general po-
sition hypothesis guarantees that y(p) 6= y(q) and
x′(p) 6= x′(q) for p 6= q, although it is possible that
x(p) = x(q) unless 4|k.

By the Erdős–Szekeres theorem, we can find a
subset Q = {q1, ..., qm} for some m ≥ d

√
ne with
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x′(qi) ≤ x′(qi+1) and satisfying either y(qi) < y(qi+1)
or y(qi) > y(qi+1) for all i. Without loss of gener-
ality, we assume the former case y(qi) < y(qi+1) is
true and Q is maximal among all such subsets. We
denote P+

i = {p ∈ P : x′(p) > x(qi), y(p) > y(qi)}
and P+

m+1 = P as a convention. Thus, we define

Pi = P+
i+1 \P

+
i and notice that P1, . . . , Pm form a par-

tition of P \Q otherwise the maximality of Q would
be violated.

Now, we determine an ordering on the points of
Pi for a fixed i: First, take the points which have a
larger y value than y(qi), ordered by their x′-values in
a decreasing order; Then take the remaining points,
ordered by their y values in decreasing order. Let us
denote this ordering of Pi as Order(Pi). Thus, we
define the ordering of P as follows:

q1,Order(P1), q2,Order(P2), . . . , qm,Order(Pm).

Finally, we bound the number of edges in this or-
dering. Indeed, the points preceding qi have both a
larger x′-value and a larger y-value coordinate than qi,
which means qi has outdegree at most

⌈
k
4

⌉
. For each

point in Pi, it only sees preceding points from either
right or above (see Figure 9 right), so it has outdegree
at most

⌈
k
2

⌉
. Therefore, we can conclude our upper

bound using m ≥ d
√
ne and

⌊
k+1
4

⌋
=
⌈
k
2

⌉
−
⌈
k
4

⌉
.

D.2.2 Lower bound

We construct the n-element point set P as follows:
Take a set of size n that contains the b

√
nc × b

√
nc

grid and is contained in a d
√
ne × d

√
ne grid. Then

apply a scaling transformation to make the gap of
the grid slightly larger than 1, but the diameter of
the set remains at most

⌈√
2 · d
√
ne
⌉
. Now make an

even smaller perturbation of the point set ensuring
that no isosceles triangles remain, neither two pairs
of points whose segment is parallel to one of the `i,
but the minimum distance among the points remains
over 1 and the diameter of the point set remains under⌈√

2 · d
√
ne
⌉
. The resulting set is our P .

We show that the number of edges is always at least
n ·
⌈
k
2

⌉
−O

(√
n · k2

)
in the ordered Yao graph associ-

ated with P regardless of the ordering. In particular,
we fix an arbitrary ordering of P . Define multiset
S containing vertices with outdegree less than

⌈
k
2

⌉
and let the multiplicity of each vertex be the differ-
ence of

⌈
k
2

⌉
and its outdegree, It suffices to prove that

|S| ≤ O
(√
n · k2

)
regardless of the ordering. Now let

Si be the set of points p for which both si(p) and
si+bk/2c(p) are empty when p is added. It is straight-

forward that S ⊆
k−1⋃
i=0

Si, meaning |S| ≤
k−1∑
i=0

|Si|. Thus

we only have to prove that |Si| ≤ O (
√
n · k) for all

i = 0, ..., k − 1.
We make the following simple observation.

Lemma 12 Let p be a point in the plane and r1, r2,
r3 and r4 be distinct rays starting in p counterclockwise
in the aforementioned order with ∠riri+1 being called
αi and the closed cone defined by ri and ri+1 by Ci
(the indices being counted mod 4). If α1 = α3 and
both α2 and α4 are smaller than π, then for any strip σ
of width 1 perpendicular to to the angle bisector of C2

(and C4) and containing p, all points of σ ∩ (C2 ∪ C4)

have distance at most max
{

1
cos (α2/2)

, 1
cos (α4/2)

}
from

p.

Next, we define strips σi,j for i = 1, . . . , k − 1 and
j = 1, . . . , ti for some ti <

⌈√
2 · d
√
ne
⌉
. Consider the

direction that is perpendicular to the line bisecting `i
and `i+bk/2c+1, and denote the minimal strip contain-
ing P parallel to this direction as σi. Notice that the
diameter of P is at most

⌈√
2 · d
√
ne
⌉
, we can cover σi

by at most this number of strips of width 1 along the
same direction, and denote then as σi,j . See Figure ??.

Figure 10: The σi,j ’s for some fixed i.

Now, it is enough to prove that Si ∩ σi,j = O(k) for
any i, j and then sum up these numbers for a fixed
i. Let p be the leftmost point and q be the rightmost
point among Si ∩ σi,j . (When σi,j is vertical, we
instead take p as the lowest and q as the highest.) We
apply Lemma 12 with r1 = `i, r2 = `i+1, r3 = `i+bk/2c,
r4 = `i+bk/2c+1, and σ = σi,j . As a consequence, we
conclude that the maximum distance between p and
any point in σi,j \

(
si(p) ∪ si+bk/2c(p)

)
is at most

D :=
1

cos (π · (dk/2e − 1)/k)
.

A similar statement holds for q by the same argument.
Observe that either q ∈ σi,j \

(
si(p) ∪ si+bk/2c(p)

)
or

p ∈ σi,j \
(
si(q) ∪ si+bk/2c(q)

)
, otherwise the one that

comes later in the ordering could not be in Si. Hence,
the distance between p and q is at most D. According
to how p and q are chosen, this means that Si ∩ σi,j is
contained in a rectangle of size 1×D. Also, since we
scaled the gap of the grid to be larger than 1, such a
rectangle can contain at most 2dDe grid points (hence
also points from P ).

Finally, it is easy to check that D ≤ Ck for some
absolute constant C using trigonometry and calculus,
and thus conclude the proof.
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