Tight Lower Bound for Approximating (k, ℓ) -Center Clustering under the Fréchet Distance

Kevin Buchin^{*1}, Jacobus Conradi^{†2}, Lindsey Deryckere^{‡3}, Mart Hagedoorn^{§1}, and Carolin Rehs^{¶1}

¹Technical University Dortmund, Germany ²University of Bonn, Germany ³University of Sydney, Australia

1 Introduction

Clustering is a fundamental task in computer science that aims to group similar objects while providing a compact representation of the original data. Most existing work assumes inputs in the context of point data [1, 8]. However, recently, effort has been devoted into the clustering of more complex data like curves, which arise naturally in spatial and time series data [2, 4, 6, 5]. With curves, the natural challenge is to additionally bound the complexity of the computed representation. This motivates the study of the (k, ℓ) center clustering problem under the Fréchet distance, which generalizes the classical k-center problem by restricting center curves to have at most ℓ vertices.

More formally, given a set \mathcal{G} of n polygonal curves of finite size, the (k, ℓ) -center clustering problem asks to find a set \mathcal{C} of k polygonal curves, each of size ℓ , such that the maximum (discrete or continuous) Fréchet distance of any curve in \mathcal{G} to the closest curve in \mathcal{C} is minimized.

Buchin et al. show that a careful adaptation of Gonzalez' algorithm in combination with curve simplification yields a 3-approximation for the discrete Fréchet distance in d dimensions for $d \geq 1$ and for the continuous Fréchet distance in 2 dimensions [3]. A key step in obtaining the 3-approximation is the computation of an optimal simplification of a polygonal curve, which remains unsolved under the continuous Fréchet distance in \mathbb{R}^d for d > 2. However, recent work by Cheng and Huang has introduced the first polynomial-time bicriteria approximation scheme for curve simplification in higher dimensions, marking progress towards an optimal simplification [7]. Furthermore, Buchin et al. also show that approximating the problem within a factor close to 2.598 for the discrete Fréchet distance, and $2.25 - \varepsilon$ for the continuous Fréchet distance is NP-hard.

In this paper, we improve upon these results by

proving that the (k, ℓ) -center problem under the (discrete and continuous) Fréchet distance is NP-hard to approximate within a factor of $3-\varepsilon$ for any $\varepsilon > 0$. Our results hold for curves in \mathbb{R}^d where $d \ge 2$ as well as the special case when k = 1, which implies tightness for the 3-approximation under the continuous Fréchet distance in \mathbb{R}^2 and for the 3-approximation under the discrete Fréchet distance in \mathbb{R}^d for $d \ge 2$.

2 Discrete Fréchet

We begin in the setting of discrete Fréchet distance. Here, we show that the (k, ℓ) -center clustering problem cannot be approximated within a factor of $3 - \varepsilon$, for some $\varepsilon > 0$, giving a reduction from the SHORTEST COMMON SUPERSEQUENCE (SCS) problem that generalizes the reduction given in [3]. In the SCS problem there is given a set S of n input strings of finite length over a finite alphabet Σ , asking if there exists a string S^* of size t such that each string in S is a subsequence of S^* . Even with a binary alphabet, the SCS problem is shown to be NP-Complete [9]. Furthermore, for two polygonal curves ψ and ϕ , we will denote their discrete Fréchet distance by $d_{DF}(\psi, \phi)$.

Given an instance of the SCS problem, i.e. n input strings over an alphabet $\{A, B\}$, and a value t, which denotes the maximum length of the sought superstring. We construct a corresponding (k, ℓ) -center clustering instance as follows. Let $p_0 = (0, 0)$ be the origin of the Euclidean plane and let c_1^x, c_2^x, c_3^x be regular x-gons centered on p_0 with radii 1, 2, and 3, respectively¹. The x-gons are oriented such that the coordinate of the first vertex of c_j^x is (0, j) for $1 \le j \le 3$. We define point $p_{i,j}^x$ to be the *i*th vertex of c_j^x for $1 \le i \le n$ and $1 \le j \le 3$. Next, we define the following point sequence gadgets (see Figures 1 and 2 for an illustrated example with various x):

• G_a^x starts with $p_{1,1}^x$ followed by $p_{i',1}^x$ where $i' := ((j' \lfloor \frac{x}{2} \rfloor) \mod x) + 1$ for $1 \le j' \le x$.

^{*}Email: kevin.buchin@tu-dortmund.de

[†]Email: jacobus.conradi@gmx.de

[‡]Email: lindsey.deryckere@sydney.edu.au

[§]Email: mart.hagedoorn@tu-dortmund.de

[¶]Email: carolin.rehs@tu-dortmund.de

¹Note that when x = 3 our reduction coincides with the reduction by Buchin et al. [3]

- C_A^x starts with $p_{1,2}^x$ followed by $p_{i',2}^x$ where $i' := \left(\left(j' \left\lceil \frac{x}{2} \right\rceil \right) \mod x \right) + 1$ for $1 \le j' \le x$.
- G_A^x starts with $p_{1,3}^x$ followed by $p_{i',3}^x$ where $i' := \left(\left(j' \left\lceil \frac{x}{2} \right\rceil \right) \mod x \right) + 1$ for $1 \le j' \le x$.
- G_b^x is the reverse of G_a^x .
- C_B^x is the reverse of C_A^x .
- G_B^x is the reverse of G_A^x .

We refer to G_b^x and G_a^x as buffer gadgets.

In order to construct a polygonal curve $\gamma(s)$ for each of the input strings $s \in S$, we use the gadgets defined above to map the letters A and B to the following point sequences.

- $A \to (G_a^x, G_b^x)^t, (G_A^x), (G_a^x, G_b^x)^t$
- $B \rightarrow (G_a^x, G_b^x)^t, (G_B^x), (G_a^x, G_b^x)^t$

Here $(G)^t$ means that point sequence G has been repeated and concatenated t times. We further define γ as a function that takes an input string and replaces each letter with a point sequence according to the aforedescribed mapping, concatenates these sequences, and inserts line segments between two consecutive points. Using these mappings for every input string in S we obtain a polygonal curve which is part of the input for the (k, ℓ) -center clustering problem, i.e. $\mathcal{G} = \{\gamma(s_i) | s_i \in S\}.$

Lemma 1 For any true instance of the SCS decision problem, there exists a center curve of length at most (x + 3)t and radius at most r = 1 under the discrete Fréchet distance in our construction.

Proof. If the SCS instance is true, then there exists a common superstring S^* of length at most t. We map this superstring to a polygonal curve β as follows: for every letter A or B we append (p_0, C_A^x, p_0) or (p_0, C_B^x, p_0) , respectively, with corresponding line segments between sequential points to β . Therefore, the resulting polygonal curve has at most (x+3)t vertices. Since each input string in S is a substring of the common superstring, whenever the substring omits a letter of the superstring, this letter can be matched to a corresponding buffer gadget. Whenever we need to skip a sequence of buffer gadgets, we match them to point p_0 on the polygonal curve of the superstring. \Box

Lemma 2 Let $r < 3\cos(\frac{\pi}{2x})$. There does not exist a polygonal curve ϕ in the plane that satisfies both $d_{DF}(G_A^x, \phi) \leq r$ and $d_{DF}(G_B^x, \phi) \leq r$.

Proof. Assume that there exists a polygonal curve ϕ such that $d_{DF}(G_A^x, \phi) \leq r$ and $d_{DF}((G_B^x), \phi) \leq r$ for some $r < 3\cos(\frac{\pi}{2x})$. Since the distance between two consecutive points in G_A^x or G_B^x is exactly $6\sin(\frac{\pi}{2} - \frac{\pi}{2x})$.

 $\frac{\pi}{2x}$) = $6\cos(\frac{\pi}{2x})$, there is no point in ϕ that is matched under the Fréchet Distance to two sequential points in G_A^x or G_B^x (see Figure 3a). Furthermore, since G_A^x and G_B^x follow the same polygonal curve but traversed in the opposite order, somewhere a point of ϕ must be matched to two points that have an underlying distance of $6\cos(\frac{\pi}{2x})$. This fact contradicts that there can exist a curve ϕ that satisfies both $d_{DF}(G_A^x, \phi) \leq r$ and $d_{DF}(G_B^x, \phi) \leq r$.

Lemma 3 For any instance of an SCS decision problem, consider the above reduction with x > 3t. If there exists a center curve of length at most (x + 3)tand of radius strictly smaller than $r = 3\cos(\frac{\pi}{2x})$ under the discrete Fréchet distance on the constructed instance, then the original SCS instance is true.

Proof. Let the center curve be denoted by β . We claim we can transform this polygonal curve into a superstring S^* of S from the instance of the SCS decision problem. We define disks D_i^x of radius r centered at points $p_{i,3}^x$ for $1 \le i \le x$.

First, remove all points at the start and end from β that do not lie in D_1^x and, for any consecutive points in β that both lie in D_1^x , remove the latter point. Next, split β by points that lie in D_1^x . This gives us the set of subsequences B from which we will build the superstring S^* . For each subsequence $\beta' \in B$ we calculate the discrete Fréchet distance to G_A^x and G_B^x and by Lemma 2 the following three options are possible:

- $d_{DF}((G_A^x), \beta') \leq r$ and $d_{DF}((G_B^x), \beta') > r$; the letter A is added to S^* .
- $d_{DF}((G_A^x), \beta') > r$ and $d_{DF}((G_B^x), \beta') \leq r$: the letter B is added to S^* .
- $d_{DF}((G_A^x), \beta') > r$ and $d_{DF}((G_B^x), \beta') > r$: this subsequence is ignored and no letters are added to S^* .

We claim that the resulting string S^* is a common superstring of the set of strings S. Since β is a center curve of radius r, it is within Fréchet distance r to all input strings. By their construction, every letter A and B in s_i generates a subsequence G_A^x and G_B^x , respectively, in $\gamma(s_i)$. In order to match each subsequence G_A^x or G_B^x , center β needs to visit disks D_i^x in the correct order and have a vertex in each disk, always starting and ending in disk D_1^x .

The size of the generated string S^* is at most

$$\left\lfloor \frac{(x+3)t}{x} \right\rfloor = t + \left\lfloor \frac{3t}{x} \right\rfloor$$

Hence, for any x > 3t the length of S^* is at most t, implying the SCS instance is true.

Figure 1: Three point sequences for various x, the blue sequence represents G_a^x and the black sequence represents G_A^x .

Figure 2: Three point sequences for various x, the blue sequence represents G_b^x and the black sequence represents G_B^x .

Then, from Lemma 1 and 3, by choosing $x := 2 \cdot \max(3t, \frac{1}{\epsilon}) + 1$, the following result directly follows.

Theorem 4 The (k, ℓ) -center problem under the discrete Fréchet distance is NP-hard to approximate within a factor of $3 - \varepsilon$ for any $\varepsilon > 0$ for curves in \mathbb{R}^d with $d \ge 2$, even if k = 1.

Proof. From Lemma 1 and 3 it follows that for some x > 3t, the (k, ℓ) -center clustering problem is NP-hard to approximate within a factor of $3\cos(\frac{\pi}{2x}) \ge 3 - \frac{3\pi}{2x}$, for x > 0. Hence, if we choose $x := \max(\frac{3\pi}{2\varepsilon}, 3t) + 1$, for some $\varepsilon > 0$, the (k, ℓ) -center clustering problem under the discrete Fréchet distance is NP-hard to approximate within a factor of $3 - \varepsilon$. Trivially, this result generalizes to any dimension d > 2 using the same construction.

3 Continuous Fréchet

For the continuous Fréchet distance we prove an analogous result as shown in Section 2. In the following, we denote $d_{CF}(\psi, \phi)$ as the continuous Fréchet distance between polygonal curves ψ and ϕ .

Lemma 5 Let $r < \frac{3}{2}\cos(\frac{\pi}{x}) + \frac{3}{2}$. There does not exist a polygonal curve ϕ in the plane that satisfies both $d_{CF}(G_A^r, \phi) \leq r$ and $d_{CF}(G_B^r, \phi) \leq r$.

Proof. Assume there exists a curve ϕ with $d_{CF}(G_A^x, \phi) \leq r$ and $d_{CF}(G_B^x, \phi) \leq r$. We start by showing that for each vertex $v \in G_A^x$ there must exist a vertex $w \in \phi$ such that the distance between v and w is at most r. Supposing this is not the case, some v must be matched to an edge of ϕ . However, since three consecutive points of G_A^x form an isosceles triangle, when $r < \frac{3}{2}\cos(\frac{\pi}{x}) + \frac{3}{2}$ this is not possible (see Figure 3b). Analogously, the same can be shown for G_B^x .

Furthermore, with a similar argument as was used in the proof of Lemma 2, each vertex of ϕ cannot be matched to two consecutive vertices of G_A^x or G_B^x . Hence, since $\frac{3}{2}\cos(\frac{\pi}{x}) + \frac{3}{2} < 3\cos(\frac{\pi}{2x})$ for $x \ge 3$, curve ϕ cannot exist.

The proofs of the following lemmas are omitted, as they are analogous to the proofs of Lemmas 1 and 3.

Lemma 6 For any true instance of the SCS decision problem, there exists a center curve of length at most (x+3)t and radius at most r = 1 under the continuous Fréchet distance in our construction.

Lemma 7 For any instance of an SCS decision problem, consider the above reduction with x > 3t. If there exists a center curve of length at most (x + 3)tand of radius strictly smaller than $r = \frac{3}{2}\cos(\frac{\pi}{x}) + \frac{3}{2}$ under the continuous Fréchet distance, then the instance is true.

Figure 3: Critical Fréchet distances for the discrete and continuous case.

Again, from these results, we can finally conclude with the following theorem.

Theorem 8 The (k, ℓ) -center problem under the continuous Fréchet distance is NP-hard to approximate within a factor of $3 - \varepsilon$ for any $\varepsilon > 0$ for curves in \mathbb{R}^d with $d \ge 2$, even if k = 1.

Proof. From Lemma 1 and 3 it follows that for some x > 3t, the (k, ℓ) -center clustering problem is NP-hard to approximate within a factor of $\frac{3}{2}\cos(\frac{\pi}{x}) + \frac{3}{2} \ge 3 - \frac{3\pi}{2x}$, for x > 0. Hence, if we choose $x := \max(\frac{3\pi}{2\varepsilon}, 3t) + 1$, for some $\varepsilon > 0$, the (k, ℓ) -center clustering problem under the continuous Fréchet distance is NP-hard to approximate within a factor of $3 - \varepsilon$. Trivially, this result generalizes to any dimension d > 2 using the same construction.

References

- Pankaj Agarwal and Cecilia Magdalena Procopiuc. Exact and approximation algorithms for clustering. *Algorithmica*, 33:201–226, 2002.
- [2] Milutin Brankovic, Kevin Buchin, Koen Klaren, André Nusser, Aleksandr Popov, and Sampson Wong. (k, l)-medians clustering of trajectories using continuous dynamic time warping. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems, page 99–110. Association for Computing Machinery, 2020.
- [3] Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna, Maarten Löffler, and Martijn Struijs. Approximating (k, ℓ)-center clustering for curves. In Proceedings of the Thirtieth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA '19, page 2922–2938. Society for Industrial and Applied Mathematics, 2019.

- [4] Kevin Buchin, Anne Driemel, Natasja van de L'Isle, and André Nusser. klcluster: Center-based clustering of trajectories. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, page 496–499. Association for Computing Machinery, 2019.
- [5] Maike Buchin, Anne Driemel, and Dennis Rohde. Approximating (k,ℓ)-median clustering for polygonal curves. ACM Trans. Algorithms, 19(1), February 2023.
- [6] Maike Buchin and Dennis Rohde. Coresets for (k, *l*)-median clustering under the fréchet distance. In Conference on Algorithms and Discrete Applied Mathematics, pages 167–180. Springer, 2022.
- [7] Siu-Wing Cheng and Haoqiang Huang. Curve simplification and clustering under fréchet distance. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '23, pages 1414–1432. Society for Industrial and Applied Mathematics, 2023.
- [8] Wen-Lian Hsu and George Nemhauser. Easy and hard bottleneck location problems. *Discrete Applied Mathematics*, 1(3):209–215, 1979.
- [9] Kari-Jouko Räihä and Esko Ukkonen. The shortest common supersequence problem over binary alphabet is np-complete. *Theoretical Computer Science*, 16(2):187–198, 1981.