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On the bisector of two low degree curve segments in the plane
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Abstract

We show how to compute an exact representation
of the bisector for two curve segments in the plane
whose parametrization is a rational function of de-
gree smaller than or equal to 2. It is a piecewise curve
composed of at least one component and with no more
than seven components.

1 Introduction

Consider O; and O, two curve segments in R2, pre-
sented parametrically by O1(u),u € I, and O4(t),t €
I, with I; and I5 closed intervals in R. Their bisector
B(01,03) is defined as the equidistant set of points
from the two objects. The computation of a repre-
sentation for the bisector is not an obvious task from
this definition. Indeed, even if the parametric object
is given with a regular and proper parametrization, it
should be noted that the distance function

a:(B,0) = int |B - O(w), M)

is not always differentiable with respect to the point
B, and a minimum of the distance function could be
achieved at more than one parameter value. To over-
come these difficulties, the notion of untrimmed bi-
sector was introduced (see [7], [8]).

Definition 1 The untrimmed bisector of O1 and Oq
is defined as the set of centres of circles which are
tangent to O1 and Oy simultaneously.

This definition does not imply the same minimum
distances measured from the two objects, in the pres-
ence of critical shapes on the objects (singular, in-
flection or self-intersection points). There are some
extraneous parts that should be trimmed in order to
obtain the searched bisector.

We show here how to compute the representa-
tion for the bisector of two curve segments whose
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parametrization is a rational function of degree
smaller than or equal to 2 (i.e. the degree of the
polynomials involved is smaller than or equal to 2).
This can be applied to determining the medial axis
or the Voronoi diagram for objects constructed from
segments of curves (see [1 [3, [, [10]).

The output of our method will include:

1. The exact representation for the bisector of an
endpoint A; and open curve segment ¢; denoted
by B(A;,¢;) is computed following [7].

2. The bisector of endpoints A; and A; denoted by
B(A;, A;) is a half line or a line segment whose
representation is trivial.

3. The exact representation for the bisector of
two open curve segments c¢; and c¢; denoted by
B(c;, ¢j) is computed either from the formula @
below in the next section, or from an implicit rep-
resentation F(x,y) = 0 (see [2]) of the bisector
of the two corresponding curves.

If the degree of the parametrization is higher then
the degree of the bisector gets too big for practical
computations in case exact computations are to be
performed. In [5] it is shown that for two cubic curves,
the bisector is an algebraic curve of degree 46.

2 Computing the untrimmed bisector of two plane
rational curves

The algebraic representation of the untrimmed bisec-
tor of two regular plane rational curves s and r with
parametrizations, respectively s(u) and r(t), is de-
scribed as follows:

A point B = (X,Y)" € R? is in the
untrimmed bisector of the curves s and r if
it satisfies the following system of equations
(see [4, 5l [6]):

e The point B is in the normal lines of s

and r, at s(u) and r(¢), respectively:

(X,Y) =s(u),s'(u)) = 0, 2)
(X,Y) —x(t),x'(t)) = 0,
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where s’ and r’ denote the derivatives
of s and r.

e The point B is at equal distance from
s(u) and r(t):

(X, Y), 2 (x(t) — s(u)) +
Hlsw)|? — r(@)2 =o0. &

Equations can be written in matrix form AB =
V, with

Our goal is to compute a parametrization of the bisec-
tor of the curves s and r in terms of one parameter,
either u or t. Our approach consists in:

e First solve the system ([4]) for B in terms of v and
t, using Cramer’s rule: For det(A) # 0, we have:

B(u,t) = A"V, (5)

and substituting B(u,t) in , we obtain the
equation:

Fu,t) = (B(u, 1), 2(r(t) — s(u)))+
t

e Then, express one of the parameters, say v in
terms of ¢, from the equation @ Since there
might be more than one solution, we get u; =
uz(t), 1= 1,,m

e Finally, substitute u by u;(¢) in B(u,t), for each
solution, and obtain the parametrization of the
untrimmed bisector of the form:

bi(t) = Blui(t),t) = [2:(t), 5:®]" . (7)
where x;(t),y;(t) are in general non-rational.

For given values of the parameters u and ¢, a bi-
sector point can be computed from the formula .
Then for two corresponding footpoints p1 = s(ug) € s
and pa = r(tg) € r, their corresponding bisector point
is given by B(ug,to).

Note that the bisector of a point and a rational
curve has a rational parametrization: the process of
computing the bisector and trimming its extraneous
part is presented for example in [7]. There are sev-
eral pairs of geometric objects possessing a rational
bisector, but in general it is very difficult to have a
criterion for the rationality of the bisector, and very
few generic configurations of objects with rational bi-
sector are known.

The bisector of two planar rational curves is not a
rational curve in general (see [§]). The algebraic rep-
resentation is of high degree and determining the trim-
ming of the extraneous part is not evident. An ap-
proximate representation can also be used in the non

rational case (see [6]). An algebraic approach is given
in [2] to compute an algebraic (rational and non ra-
tional) parametrization for the bisector for some par-
ticular curves. The trimming process is also shown.

3 The bisector of two low degree curve segments

Consider two curve segments s; and s; whose
parametrization is a rational function of degree
smaller than or equal to 2. There are two possible
configurations to take into account: the curve seg-
ments share one endpoint, or the curve segments are
disjoint. The bisector will be constructed as a combi-
nation of the bisectors of a couple of distinct objects of
s; and s;: point-point, point-curve and curve-curve.
The process involves, for each endpoint of s;, to deter-
mine, if possible, the corresponding footpoint on s;.
In this way we identify and properly store the various
components forming the bisector. The determination
of a footpoint will be done by computing the corre-
sponding parametric values through the equation @

Remark 1 The equation @ is an equivalent repre-
sentation for the point B(u,t) of the bisector of the
two curve segments in terms of parameters u and ¢
(see [2]). More precisely, the solution of @ repre-
sents the set of all couples of footpoints on s;(u) and
s;j(t) that share a bisector point B(u,t) (see [4} [6]).

Proposition 1 Let s;(u), u € [0,1] and s;(t),t €
[0,1] be two curve segments with their respective
endpoints A; = s;(0), B; = s;(1), A; = s;(0) and
Bj = s;(1). The set of solutions of the equation (6]
on the boundary of the parameter domain [0, 1] x[0, 1],
if non empty, corresponds to the couples of parame-
ter values of an endpoint of a segment and its corre-
sponding footpoint (probably more than one) on other
segment curve.

Remark 2

1. An endpoint of a segment and its corresponding
footpoint on the other segment correspond to a
point of the bisector of s; and s; where there is a
change of the component as indicated in Figure

m.

2. For two curve segments, in general not all points
of a curve segment have a corresponding foot-
point on the other curve segment, and precisely
if the equation @ has no solution there is no
curve-curve bisector component involved in the
bisector of the two curve segments. It consists
essentially of the point-point and point-curve bi-
sector components as indicated in Figure |2.

In what follows * will denote 0 or 1, and * = 1 if
* = (0 and vice-versa.
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B(As, c3)

Bleisz)

B(Ba, c3)

Figure 1: A; and B; with respective corresponding
footpoints p; and py on co: B(cq, ¢2) in blue, B(A1, ¢2)
and B(Bj, c2) in orange.

-

B(A,Cy)

B(Ay, A2)

Figure 2: No corresponding footpoints. B(Aj, As) in
red and B(Aj, c2) in orange.

Definition 2

1. An endpoint of a segment is said Free-Point (FP)
if it has no corresponding footpoint on the other
segment sharing curve-curve bisector points.

2. An endpoint of a segment is said Non-Free-Point-
typel (NFP1) if it corresponds to a solution cou-
ple (ug,*) (or (*,tg)) where ug (orty), is a unique
value corresponding to a unique footpoint on
the other segment sharing curve-curve bisector
points.

3. An endpoint of a segment is said Non-Free-Point-
type2 (NFP2) if it corresponds to a solution cou-
ple (ug,*) (or (*,tp)) where ug (or tg) has two
values, i.e. an endpoint with exactly two corre-
sponding footpoints on the other segment sharing
curve-curve bisector points.

The main theorem of this paper establishes that
the upper bound for the number of components of the
bisector of two curve segments is seven. The proof of
this theorem requires to introduce three lemmas.

Lemma 1 describes the bisector of a point P
and a curve segment s = {A, ¢, B}, where A
and B are the endpoints, and ¢ is the open
curve segment (see Figure [3)).

P2

s,
B(Py, Ag) U B(Ps, C3) U B(Ps, Bg)

B(Py, C) B(Py, A2) UB(Py, C2)
Figure 3: The interactions of a point and the elements
of a curve segment when computing their bisector.

Lemma 2, for two disjoint curve segments
si = {Ai, ¢, Bi} and s; = {Aj,¢;, B}, de-
termines the domain where A; interacts with
sj, in the cases where A; is a F'P or a NF P1.

Lemma 3 gives the number of bisector com-
ponents generated by different types of end-
points (see Figures [4] and .

B(A1, B)

B(Ay, Az)

Figure 4: NPF1 configuration generating one, two and
three components: point-curve bisector in orange and
point-point bisector in red.

The following theorem specifies the maximum num-
ber of components appearing in the bisector of two
curve segments whose parametrization is a rational
function of degree smaller than or equal to 2.

Theorem 3 Let s; and s; be two disjoint curve seg-
ments whose parametrization is a polynomial of de-
gree smaller than or equal to 2. The bisector of s; and
s; is composed of at least one component and with no
more than seven components.

Figure [ shows two examples where the seven com-
ponents case is achieved.
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Figure 5: NPF2 configuration with a single and four
bisector components: point-point bisector in red and
point-curve in orange.

Figure 6: The two curve segments with one NFP2
for one curve segment and one NFP1 for the other:
point-point bisectors in red and point-curve bisectors
in orange

B

B(C1,Cy)
B(B1, Bz)

B(By, C2)

Figure 7: The bisector of two curve segments with the
same endpoints.

3.1 The case of sharing one common endpoint

Assume A; = A;. In this case, the solution of the
equation @ is one or a couple of solutions of the
parameter values: the first one corresponding to the
(two) same endpoints, and the second one is corre-
sponding to a free endpoint of one curve segment (s;)
and its corresponding footpoint on the other curve
segment (s;).

For the case of two curve segments sharing one end-
point, the bisector is composed by 1, 2 or 3 compo-
nents (see, for example, Figure .

When s; and s; have exactly the same two end-
points (A; = A; and B; = Bj), the bisector has ex-
actly one component, a curve-curve bisector.

4 Conclusions

A new approach is presented to compute the exact
representation of the bisector of two low degree curve
segments. The computed representation for each bi-
sector component is either a rational parametrization,
or a non rational parametrization (involving square
roots), or a semi-algebraic representation (involving a
real algebraic curve presented implicitly).
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