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Containment results on points and spheres
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Abstract

Let S be a set of n points in general position in Rd.
We show several containment results for points from
S in spheres determined by d+ 1 points of S. Among
them, we prove a Delaunay-type criterion for point sets
in R3. Also, we show bounds on the expected number
of points from S contained in a sphere determined by
four points chosen uniformly at random from S ⊂ R3.
A tight upper bound construction is provided, obtained
by inversion of points on the moment curve. We
also show a lower bound and prove that it is best
possible for n ≤ 7. In order to do so, we solve the

recurrence relation T (n) =
⌈

n
n−5T (n− 1)

⌉
with base

case T (7) = 29. This is of independent interest, since
most recurrence relations of this type seem not to have
a solution in closed form.

1 Introduction

Let S be a set of n ≥ d+ 2 points in general position
in Rd, d ≥ 2, meaning no m of them lie on a (m− 2)-
dimensional flat for m = 2, 3, ..., d+ 1 and no d+ 2 of
them lie on the same (d− 1)-sphere. We show several
containment results for points from S in the open balls
having as boundary spheres determined by d+1 points
from S. With a slight abuse of notation, usual in the
literature, in the following we will say sphere instead
of open ball for this containment relationship.

First, we prove a Delaunay-type criterion for point
sets in R3. The well-known empty circle property of the
Delaunay triangulation in R2, see e.g. Lemma 9.4 in [4],
states that given a set S = {a, b, c, d} of four points in
convex position in the plane, then exactly two of the
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four circles passing through three points of S contain
the fourth point of S; and if the line passing through
two points a and b of S separates c and d, then the
circle through a, b, c contains d if and only if the circle
through a, b, d contains c. This criterion is commonly
used to characterize the Delaunay triangulation of a
set S of n points in R2 as the set of triangles with
vertices from S, whose circumcircles are empty of other
points from S. Delaunay in his paper [7] from 1934
stated this more generally for Rn, n ≥ 2. We obtain a
statement similar to the Delaunay criterion, for five
points in R3, given in Section 2.
Second, we study the expected number E(XS,d) of

points from S that are contained in the sphere pass-
ing through d + 1 different points from S, chosen
uniformly at random. E(XS,d) is determined by the
vector (s0, s1, . . . , sn−d−1), where sk is the number of
spheres passing through d+ 1 points of S that enclose
exactly k other points from S, for k = 0, . . . , n−d−1.
Clearly,

∑n−d−1
k=0 sk =

(
n

d+1

)
. Then,

E(XS,d) =

∑n−d−1
k=0 k · sk(

n
d+1

) . (1)

The expression
∑n−d−1

k=0 k · sk can also be interpreted
as the number of (p,Q) pairs, such that p is a point
of S, and Q is a sphere induced by d + 1 points of
S\{p} containing p in its interior. In dimension d = 2,
E(XS,2) is equivalent to the rectilinear crossing num-
ber [29] of S, denoted cr(S), via the known relation,
first obtained by Urrutia [31], see also [12]:

n−3∑
k=0

k · sk =

(
n

4

)
+ cr(S). (2)

In this paper we mainly focus on dimension d = 3. We
define Sn = min

∑n−4
k=0 k · sk, where the minimum is

taken over all sets S of n points in general position in
R3.
In Section 3 we show a lower bound of Sn ≥

2

⌊
(n5)
5

⌋
+
(
n
5

)
− 2

⌊
n
25

⌋
for each n ≥ 5. We have found

point sets showing that this bound is best possible for
n ≤ 7; i.e., S5 = 1, S6 = 8, and S7 = 29. Other found
point sets show that S8 ≤ 80, S9 ≤ 189, and S10 ≤
376.
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To prove the bound on Sn, we present a solution in
closed form of the recurrence relation

T (n) =

⌈
n

n− a
T (n− 1)

⌉
for n > b, and T (b) = c,

with a = 5, b = 7, c = 29. Interestingly enough, Con-
way et al. [6] needed to solve, for a different problem,
the case with a = 3, b = 4, c = 1, and stated that most
recurrence relations of this shape, for given integers
a, b, c, seem not to have a solution in closed form, leav-
ing as an open problem to characterize those which
do.
We will consider all five-tuples of points from S.

For a set F of five points in R3 we say that F is of
Type A if s0 = 4 (then s1 = 1), of Type B if s0 = 3
(then s1 = 2), and of Type C if s0 = 2 (then s1 = 3).
Calling A,B,C the number of five-tuples of each type
we can write

n−4∑
k=0

k · sk = 1 ·A+ 2 ·B + 3 · C. (3)

Note that these are the only possible types, because
each sphere counted by s0 corresponds to a simplex
of the Delaunay triangulation of F and the number
of simplices in a triangulation of n points with h of
them on the boundary of the convex hull is between
n−3 and

(
n−1
2

)
−h+2 [11]. In particular, a set of five

points in non-convex position is of Type A, whereas
there are two types, B and C, of sets of five points in
convex position.

In Section 4 we show that for a set S of n points on
the moment curve in R3, all its five-tuples of points
are of Type B. Then, among all sets S of n points in
convex position, points on the moment curve minimize∑n−4

k=0 k ·sk. Let us also remark that the order type [13]
of a point set does not determine the types A, B, C of
all of its five-tuples of points. In particular, there are
cyclic polytopes, i.e., point sets that have the same
order type as a set of points on the moment curve,
not all whose five-tuples are of Type B. We also prove
that there exist sets of n points all of whose five-tuples
are of Type C and thus, by (3), maximize

∑n−4
k=0 k · sk

among all sets of n points in general position in R3.
Interestingly, these point sets are obtained by applying
inversion to the points on an arc of the moment curve.
Finally, in Section 5 we consider sets S of points

in Rd, d ≥ 2. Let Pd(S) be the probability that the
sphere passing through d+ 1 points chosen uniformly
at random from S, contains another point chosen
uniformly at random from the remaining points of
S. We define Pd(n) as the minimum of Pd(S) among
all sets S of n points in general position in Rd, and
P ∗
d = limn→∞ Pd(n). We prove that this limit exists

for each fixed dimension d. For d = 2, we observe that
P ∗
2 is equivalent to the rectilinear crossing number

constant ν∗, see e.g. [30], namely P ∗
2 = 1+ν∗

4 by using

Equation (2). Then it is not surprising that the proof
for existence of ν∗ from [30] extends smoothly to a
proof for existence of P ∗

d for d > 2. For dimension
d = 3, we show the lower bound P ∗

3 ≥ 7
25 . Other

research on containment results on points and spheres
was mainly carried out in dimension d = 2, see e.g. [2,
5, 10, 15, 16, 21, 25], with others, but noticeably fewer,
for d ≥ 3, see e.g. [3, 8, 9, 24, 27]. Due to lack of space,
proofs are omitted.

2 A Delaunay-type criterion in R3

We say that a plane π separates two points d and e,
if d and e do not lie in the same (closed) half-space
bounded by π. We say that a triangle ∆(a, b, c) with
vertices a, b, and c separates two points d and e, if the
plane π passing through a, b, and c, separates d and
e. We denote the sphere passing through four points
a, b, c, and d with ⃝(a, b, c, d).

Lemma 1 Let S = {a, b, c, d, e} be a set of five points
in general and convex position in R3, such that the
plane π passing through a, b, c separates d and e. Then
the sphere ⃝(a, b, c, d) contains e in its interior if, and
only if, the sphere ⃝(a, b, c, e) contains d in its interior.

Theorem 2 Let S = {a, b, c, d, e} be a set of five
points in general and convex position in R3, such
that triangle ∆(a, b, c) separates d and e, and triangle
∆(a, d, e) separates b and c. Then, exactly two of
the four spheres ⃝(a, b, c, d), ⃝(a, b, c, e), ⃝(a, d, e, b)
and ⃝(a, d, e, c) contain the remaining point of S in
its interior. Furthermore, ⃝(a, b, c, d) contains e if,
and only if, ⃝(a, b, c, e) contains d; and ⃝(a, d, e, b)
contains c if, and only if, ⃝(a, d, e, c) contains b.

Remark 1 Let S = {a, b, c, d, e} be a set of five points
in general and convex position in R3. It follows from
Radon’s lemma that we can relabel the points from
S such that triangle ∆(a, b, c) separates d and e, and
triangle ∆(a, d, e) separates b and c.

3 A lower bound on the expected number of
points in a sphere

Theorem 3 For n ≥ 5,

Sn ≥ 2

⌊(
n
5

)
5

⌋
+

(
n

5

)
− 2

⌊ n

25

⌋
,

with equality for 5 ≤ n ≤ 7. In particular, S5 = 1,
S6 = 8, and S7 = 29.

The equality for n = 5 is attained for a Type A set
of five points. The equalities for n = 6, 7 are obtained
by the example point sets and by case analysis on
the number of points on the convex hull of a generic



XXI Spanish Meeting on Computational Geometry, Santander, June 30-July 2, 2025

point set, together with some geometric arguments.
For n > 7, the inequality follows from Lemmas 4, 5
and 6, and by using induction on n.

Lemma 4

Sn ≥
⌈

n

n− 5
Sn−1

⌉
.

Lemma 5 For any n ∈ N, n ≥ 6, the quotient
(n−1

5 )
n−5

(a) is in N, if n is not a multiple of 5,

(b) equals 125
(
ℓ+1
4

)
+ 25

(
ℓ
2

)
+ 1

5 , if n = 5ℓ.

Lemma 6 The recurrence relation

T (n) =

⌈
n

n− 5
T (n− 1)

⌉
for n > 7 and T (7) = 29,

has solution

T (n) = 2

⌊(
n
5

)
5

⌋
+

(
n

5

)
− 2

⌊ n

25

⌋
.

4 The moment curve and an upper bound

Lemma 7 Let S be a set of n points on the moment
curve γ(t) = (t, t2, t3), with t > 0. Then, all five-tuples

of S are of Type B, and
∑n−4

k=0 k · sk = 2
(
n
5

)
.

The proof is based on point-in-sphere determinant
tests.

Corollary 1 Among all sets S of n points in convex
and general position in R3, points on the moment
curve minimize

∑n−4
k=0 k · sk.

Next, we will use the inversion transformation to
construct point sets of arbitrary size in R3 with all of its
five-tuples being Type C. The inversion is determined
by two parameters: The center of inversion O and the
radius of inversion R. Two points p and p′ in R3 are
said to be inverses of each other if:

1. The points p and p′ lie in the same half-line with
origin in O.

2. The Euclidean distances |Op| and |Op′| in R3

satisfy R2 = |Op||Op′|.

The following is a well-known inversion’s property
which is key to construct such sets.

Property 1 The inverse of any sphere ⃝ that does
not pass through the center of inversion is a sphere ⃝′

that also does not pass through the center of inversion.
Also, if the center of inversion is in the interior of ⃝,
then the interior of ⃝ transforms to the exterior of
⃝′ and the exterior of ⃝ transforms into the interior
of ⃝′.

We show that all the spheres defined by four points
on the moment curve γ(t) with 0 < t < 1

10 intersect,
in point O =

(
0, 1

2 , 0
)
. Then, inversion with center O

and radius R = 1 transforms each five-tuple of Type
B of points from γ(t) with 0 < t < 1

10 into one of
Type C. Thus:

Theorem 8 Let S be a set of n points in general
position in R3. Then,

∑n−4
k=0 k · sk ≤ 3

(
n
5

)
and the

bound is tight.

Corollary 2 Among all sets of n points in general
position in R3,

∑n−4
k=0 k · sk is maximized for a set S

of n points on the curve δ(t) given by(
4t

4t6 + 4t4 + 1
,
4t6 + 4t4 + 8t2 − 3

8t6 + 8t4 + 2
,

4t3

4t6 + 4t4 + 1

)
with 0 < t < 1

10 . All the five-tuples of S are of Type C.

The curve δ(t) is the inversion of the moment curve
used in Theorem 8.

5 A universal constant for points in spheres con-
tainment

Let S be a set of n ≥ d+ 2 points in general position
in Rd. Let Pd(S) be the probability that the sphere
passing through d+ 1 points chosen uniformly at ran-
dom from S, contains another point chosen uniformly
at random from the remaining points of S. We have

Pd(S) =

∑n−d−1
k=0 k · sk

(d+ 2)
(

n
d+2

) . (4)

To see this, first observe that there are
(

n
d+2

)
ways

to choose d + 2 different points from S, and among
them, any can be the point to test to be inside or
outside the sphere determined by the other d+1 points.
On the other hand, for a sphere enclosing k points
of S, we count k times a sphere containing another
point. Altogether, there are

∑n−d−1
k=0 k · sk spheres

determined by d+1 points that contain another point
from S. All these spheres containing a point are equally
likely to be chosen.

We define Pd(n) = minPd(S), where the minimum
is taken among all sets S of n points in general position
in Rd, and P ∗

d = limn→∞ Pd(n). We show that this
limit exists.

Lemma 9 For each dimension d ≥ 2, there exists a
constant 0 ≤ P ∗

d ≤ 1 such that

P ∗
d = lim

n→∞
Pd(n).

From Theorem 3 and the proof of Lemma 9 we
obtain the following corollary:

Corollary 3

P ∗
3 ≥ 7

25
.
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