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Abstract

We provide a general framework for deciding “how
far away from a factorization” a given polynomial is,
and apply an implementation in julia to the case of
coupler curves of 4-bar linkages. We also clarify when
the inversion of the coupler curve in a particular circle
is a conic, and classify the conics arising in this way.

1 Introduction

Perhaps no mechanical linkage is more recognizable
than the four-bar linkage. Its four rigid bars, called
links, are connected to one another by revolute joints,
and their movement has one degree of freedom in the
non-degenerate case. Of the four links, the coupler
link ℓ3 is the only one not rigidly connected to the sta-
tionary ground link ℓ1. It is usually rigidly connected
to a coupler triangle ∆. The trace point T , the third
vertex of ∆, traces the coupler curve κ as the linkage
moves through its possible positions, cf. Figure 1.

Antiparallelograms consist of two sets of opposite
links of equal length in which the longer links cross.
Their coupler curves are bicircular quartics, with
highest-order term x4 + 2x2y2 + y4. Playing with
these quartics suprised us with the observation that
applying a circular inversion in the correct place turns
them into conic sections! Why should this be?

Figure 1: An antiparallelogram linkage in black, the
link on the x axis being “grounded”. In red is a coupler
curve traced by a point on the shaded coupler triangle,
in blue a circle on a similar triangle. Inversion of the
red curve in the blue circle yields the green ellipse.

For more general four-bar linkages this is no longer
true, but many things are similar. The general coupler
curve is now a tricircular sextic [3], with highest-order
terms (x2 + y2)3. These curves can achieve a much
wider range of shapes, but in the vicinity of special
cases they “almost” decompose into two or more con-
stituent curves, cf. Figures 2 and 3.

Figure 2: The red coupler curve of a general four-
bar linkage that is very close to an antiparallelogram
almost decomposes into the product of a circle and
the bicircular quartic from Figure 1.

Figure 3: The curve of a general four-bar linkage that
is very close to a square almost decomposes into the
product of three circles.
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Apart from solving the mystery of the inversions,
the goal of this paper is to take the first step towards a
Fourier-like representation of k-circular planar curves
in terms of a list of “almost factors” and a minimal
error term that needs to be added to achieve factor-
ization. For this, we take a resolutely geometric view:

2 The geometry of factorization

How far is, say, a quadratic polynomial

ax2 + bxy + cy2 + dx+ ey + f (2.1)

in two variables away from decomposing into a product
(axx+ ayy + a0)(bxx+ byy + b0) of linear forms?

To answer this geometrically, we combine the coeffi-
cients of the linear forms into the matrixaxay

a0

 [
bx by b0

]
=

axbx axby axb0
aybx ayby ayb0
a0bx a0by a0b0


and rearrange this 3×3 Segre embedding S(1,1);3 of two
linear forms in 3 variables by reading it row-wise into
a column vector s = s(1,1);3 of length 9. This column
vector, in turn, projects to the Veronese embedding of
the quadratic form via the matrix

P = P(1,1);3 =


1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1

 .

The entries of Ps are the coefficients of the monomials
(x2 : xy : y2 : x : y : 1) in the product. For instance,
the second entry is axby + aybx, the coefficient of xy.
The image in R6 under P thus parametrizes the

quadratic forms that split into linear factors. Elimi-
nating the variables ax, ay, a0, bx, by, b0 from the equa-
tions a = axbx, b = axby + aybx, . . . , f = a0b0 using
polynomial implicitization [2, Theorem 3.3.1] shows
that the coefficients of factorizable forms (2.1) satisfy

ae2 + cd2 + fb2 − 4acf − bde = 0, (2.2)

and we are tempted to call it a day — do we not
now have a precise criterion for when a quadratic
polynomial splits? For instance, (x+1)(x−1) = x2−1
splits because the only non-zero coefficients are a = 1,
f = −1, and they satisfy (2.2), as do the coefficients
of x2 + 2xy + y2, for example.
But not so fast: According to (2.2), the polyno-

mial x2 + y2, whose only non-zero coefficients are
a = c = 1 should also split — and indeed it does, into
(x+ iy)(x− iy)! Alas, algebraic geometry works best
over the complex numbers, and in order to gain insight
about real coupler curves we need to work a bit more.

We obtain the preimage under P of the coefficients
q = (a, b, . . . , f) ∈ R6 of a general quadratic polyno-
mial by solving the non-homogeneous linear system
Px = q. Written as a 3× 3 matrix, it turns out to be a b− λ1 d− λ2

λ1 c e− λ3

λ2 λ3 f

 for λi ∈ R, (2.3)

and such a point in R9 ∼= R3×3 in the preimage of q
under P corresponds to a product of linear factors
precisely if it has rank 1, i.e., its 2× 2 minors vanish.
Some very interesting vanishing minors say that

λ2
1 = bλ1 − ac, λ2

2 = dλ2 − af, λ2
3 = eλ3 − cf. (2.4)

They tell us that for the factorization to be real, we
need that bλ1 ≥ ac, dλ2 ≥ af , eλ3 ≥ cf .

Moreover, our geometric setup allow us to answer
the question of how far away a polynomial q is from
factoring. One way would be to determine the mini-
mum distance in R9 of a point in the preimage of q
under P to the variety of rank 1 matrices, but that
does not seem to carry a lot of information.

More intrinsically, we decide to measure the min-
imum total degree of a polynomial perturbation ε =
ε6x

2 + ε5xy + · · ·+ ε1 that must be added to q such
that q + ε factors, i.e., some matrix in the preimage
of q + ε has rank 1. This makes sense because total
degree is preserved by affine changes of variables, but
individual terms are not. Additionally, we of course
would like ε to be small, for instance in the sense that
∥(ε6, ε5, . . . , ε1)∥22 be as small as possible.

For example, allowing perturbation by linear poly-
nomials means looking for rank 1 matrices of the form

S(1,1);1(q, λ, ε) =

 a b− λ1 d+ ε3 − λ2

λ1 c e+ ε2 − λ3

λ2 λ3 f + ε1

 ,

where λi, εi ∈ R and additionally

λ2
1 = bλ1 − ac ≥ 0,

λ2
2 = (d+ ε3)λ2 − a(f + ε1) ≥ 0,

λ2
3 = (e+ ε2)λ3 − c(f + ε1) ≥ 0.

To generalize this to factorizing any polynomial of
degree d + e in a fixed number n of variables into
two factors of degrees d, e, up to a perturbation of
degree δ, set µ(D) :=

(
D+n−1

D

)
, the dimension of the

Veronese embedding of a polynomial of degree D in
n variables. We also set µ(−1) := 0 and accord that
the zero polynomial has degree −1.

The matrix P(d,e);n then has size µ(d+e)×µ(d)µ(e)
and kernel of dimension k := k(d, e, n) := µ(d)µ(e)−
µ(d + e). Inside the preimage S(d,e);δ(q, λ, ε) of size
µ(d)×µ(e) we find entries λ1, . . . , λk and ε1, . . . , εµ(δ).
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Theorem 2.1 For integers d, e, n ≥ 1, deciding
whether a real polynomial q of degree d + e in
n variables, perturbed by a polynomial of de-
gree −1 ≤ δ ≤ d+ e, splits into real factors of de-
grees d, e amounts to solving the quadratic optimiza-
tion problem QOPT = QOPT(d, e, n, δ, q) defined as

min 1 +

µ(δ)∑
i=1

ε2i

s.t. m = 0, m a 2× 2 minor of Sd+e,δ(q, λ, ε),

ri ≥ 0, i = 1, . . . , k(d, e, n)

where m = λ2
i − ri are the 2× 2 minors in which λi is

the only λ-variable that occurs.

We have implemented [5] this quadratic optimiza-
tion problem in julia 1.11.4 [4], using the backend
connecting it to the Gurobi 12.0.1 optimizer. To
see it in action, consider the parametrized family of
coupler curves

(x2 + y2)2 −
(
2t2 − 4t+ 7

2

)
x2 −

(
2t2 − 4t− 7

2

)
y2

−x− 6(t+ 1)y + t4 − 4t3 + 19
2
t2 − 11t+ 69

16
= 0,

(2.5)

whose parameter t encodes the position of the trace
point of a 4-bar linkage in which the ground and cou-
pler links have length 2, and the others have length 1.

This linkage has two types of configurations, a paral-
lelogram and an antiparallelogram, which meet when
the entire linkage is splayed out on a line, cf. Figure 4.

Figure 4: Three types of configuration of a certain
4-bar linkage, shown “at rest” (dark) and “in motion”
(light). Left: the trace point in the antiparallelogram
configuration traces a quartic. Middle: the linkage
degenerates into a straight-line configuration. Right:
The parallelogram configuration moves in a circle.

In consequence, the tricircular sextic that describes
the motion of the coupler point factors into a conic,
which by tricircularity must be a circle, and a family
of quartics parametrized by t.

Running our factorization algorithm on this family
for 0 ≤ t ≤ 0.2 yields that in all cases, the degree 4
coupler curve can be factored into a product of conics
after allowing for a linear error term, cf. Figure 5.

3 Inversions of coupler curves

Let b denote the symmetry axis of the antiparallel-
ogram linkage of Figures 1 and 2, and let γ be the
envelope of all the symmetry axes obtained as the

Figure 5: Almost-factorizing a 1-parameter family of
quartic curves (fat) into two circles (thin). The colors
represent values of the parameter t in equation 2.5 ,
from 0 (red) to 0.2 (purple). The given error is the
Euclidean 2-norm of the affine term that needs to be
added to achieve factorization.

linkage moves, cf. [2, Definition 3.4.5]. Due to its
particular properties when interpreted as a gear [1,
Section 3.3], we call γ the gear conic of the antipar-
allelogram. Moreover, let F be the reflection of the
trace point E around b.

Theorem 3.1 (a) The gear curve γ of an antiparal-
lelogram is a conic, (b) as is the inversion i(κ) of the
coupler curve κ in the unit circle around F . (c) When
F lies on the gear conic γ, the inversion i(κ) is a
parabola (Figure 6). If F and the foci of γ are sepa-
rated by γ, i(κ) is a hyperbola (Figure 7), otherwise,
an ellipse (Figure 1).

Figure 6: An antiparallelogram linkage like the one in
Figure 1, but with its coupler curve adjusted so that
F lies on the pink gear conic. As per Theorem 3.1,
the green inverted coupler curve is a parabola.

To close off the paper, we have just seen that the
inversions of coupler curves of antiparallelogram link-
ages turn into conics under inversion in a circle. What
other curves share this behavior? And which conics
arise in this way?
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Figure 7: The same construction as in Figure 6, but
with the triangles altered such that the inversion center
is outside the pink gear conic. This makes the green
inverted coupler curve a hyperbola.

Theorem 3.2 Let f ∈ R[x, y] be a polynomial of
degree d, and assume that r2 := x2 + y2 does not
divide f . Then the inversion of the vanishing locus
of f is a conic or a line iff f has either of the forms

f = a+ bx x+ by y + cr2, (3.1)

f = g(2)(x, y) + r2
(
bx x+ by y

)
+ c r4, (3.2)

where g(2)(x, y) is a homogeneous polynomial of de-
gree 2, and a, bx, by, c ∈ R are constants.

Observation 3.3 Note that the degrees of the ho-
mogeneous parts of f are contained in either the
set {0, 1, 2}, if f is of the form (3.1), or in the
set {2, 3, 4}, if f is of the form (3.2). Thus, in or-
der for its inversion to be a conic, a polynomial must
be either a conic or a quartic with a double point at
the origin and certain restrictions on its coefficients.

Theorem 3.4 The conics of the form (2.1) repre-
sentable as inversions of the coupler curve of an an-
tiparallelogram linkage family F are the ones whose
coefficients satisfy 2b = de, a < d2/4, and c >
(d2/4− a) + e2/4.

4 Open questions and future work

(1) Experimentation suggest that the optimal circles
that almost-factor the coupler curve of the 4-bar
linkage are centered either on the anchor points of
the ground link, A and B in Figure 7, or on the
final anchor of a four-bar cognate, i.e., a linkage
with different dimensions that traces the exact
same coupler curve, cf. [6]. Mathematically, this
anchor lies where the tracer point lands if the
coupler triangle is shifted and scaled to lie on the
ground link. Computing examples as in Figure 5
confirms this result, although the authors are very
puzzled as to why this should be the case.

(2) Is there some operation that simplifies coupler
curves of general four-bar linkages? For antiparal-
lelograms, inverting in a circle yields conics. Does
this generalize, and how?

(3) It is not clear to the authors that the squared

Euclidean 2-norm
∑µ(δ)

i=1 ε2i of the perturbation
terms that must be added to q in order to permit
factorization is really a good choice of objective
function for QOPT, as these coefficients perhaps
carry intrinsic geometric information. What better
substitutes could there be?

(4) The code in [5] currently only treats the Segre
embedding of two factors. This could of course
be extended to more factors in order to directly
treat the almost-factorization into three circles of
Figure 3.
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A The geometry of factorization

For any degree D ∈ N, we write MD = MD,n for the

set of µ(D) =
(
D+n−1

D

)
exponent vectors of monomials

of degree d in n variables, ordered lexicographically.
We use these sets of exponent vectors of monomials
to label the coordinates of the ambient spaces of the
Segre and Veronese embeddings:

• The Segre embedding Σ(d,e);n of Pµ(d)−1×Pµ(e)−1

parametrizes pairs of polynomials of respective
degrees d and e. We label the coordinates of its
ambient space Pµ(d)µ(e)−1 ⊃ Σ(d,e);n by Md×Me.

• The Veronese embedding Vd+e,n parametrizes
polynomials of degree d+ e. We label the coordi-
nates of its ambient space Pµ(d+e)−1 ⊃ Vd+e,n by
Md+e.

Proposition A.1 For n, d, e ∈ N, the µ(d + e) ×
µ(d)µ(e) matrix P(d,e);n that expresses the linear pro-
jection from Σ(d,e);n to Vd+e,n in these coordinates is
zero everywhere, except for a 1 in

• the row corresponding to the coordinate labeled
by the sum m+m′ and

• the column corresponding to the coordinate la-
beled by the concatenation (m,m′)

for all m ∈ Md and m′ ∈ Me. Each column of P(d,e);n

contains exactly one entry 1.

Proof. The exponent vectors m ∈ Md and m′ ∈ Me

contributing to any fixed exponent vector m′′ ∈ Md+e

are precisely the ones such that m +m′ = m′′, and
each concatenation (m,m′) occurs exactly once. □

Definition A.2 For n, d, e ∈ N, iteratively construct
the columns of a matrix K(d,e);n as follows:
(1) Start with an empty matrix of µ(d)µ(e) rows.
(2) For each row Rm′′ of P(d,e);n, labeled by an expo-

nent vector m′′ ∈ Md+e, let σ be the number of 1s
contained in it. This is just the number of ways of
obtaining m′′ by summing two exponent vectors
m ∈ Md, m

′ ∈ Me.
(3) If σ = 1, do nothing.
(4) Otherwise, write down the σ many pairs

(Π1, . . . ,Πσ) =
(
(m,m′) ∈ Md ×Me : m +m′ =

m′′) in some order, and for ℓ = 2, . . . , σ, append a
column vector to K(d,e);n that has a 1 in the row
labeled by Π1, and a −1 in the row labeled by Πℓ.

Proposition A.3 The matrix K(d,e);n has µ(d)µ(e)
rows and µ(d)µ(e)−µ(d+e) columns, and its columns
form a basis of kerP(d,e);n : Σ(d,e);n → Vd+e,n.

Proof. The stated columns obviously lie in the kernel
of P(d,e);n and are linearly independent. Counting
them confirms that they generate the entire kernel. □

Observe that there is one λ variable attached to
each generator of kerP(d,e);n, and that each column of
K(d,e);n has exactly one “+1” and one “−1” entry by
Definition A.2 (4). We conclude that each variable λi

occurs in exactly two entries of S(d,e);n(q, λ, ε), and
these entries give rise to the special 2×2 minors λ2

i −ri
in Theorem 2.1 that contribute the non-negativity
conditions insuring realness of the solution.

As in the degree 2 case discussed in the main part of
the paper, asking that the degree-(d+ e) polynomial q
split into factors of degrees d and e amounts to asking
that the matrix S(d,e);n lie in the image of the Segre

embedding of RPµ(d)−1 ×RPµ(e)−1, i.e., that it have
rank 1; and this in turn is ensured by the vanishing of
the 2× 2 minors.
This concludes the proof of the structural part of

Theorem 2.1. The choice of objective function is in
some sense arbitrary, and different choices are possible;
we choose to minimize the (square of) the Euclidean
2-norm of the perturbation, and add a constant sum-
mand +1 for greater numerical stability.

B Inversion of coupler curves

B.1 Proof of Theorem 3.1 (a)

We coordinatize the revolute joints of the antiparallel-
ogram linkage as follows: A = (a, b), B = (a+ d, b),

D = A+ ℓ ·
(
t2 − 4

t2 + 4
,

4t

t2 + 4

)
,

and set H = (B +D)/2. The coordinates for D come
from rationally parametrizing the motion of the crank
with t ∈ R. The axis of symmetry b is the line orthogo-
nal to B−D through H, and this allows us to calculate
the equation G(x, y, t) = 0 of the motion of the crank.
We obtain the envelope [2, Definition 3.4.5] of this
parametric family of curves by eliminating t from the
system of equations G(x, y, t) = ∂G(x, y, t)/∂t = 0:

4(d2−ℓ2)(x−a−d/2)2−4ℓ2(y−b)2 = ℓ2(d2−ℓ2). (B.1)

The gear curve is thus a hyperbola for d2 > ℓ2, the
double line y = b for d2 = ℓ2, and an ellipse for d2 < ℓ2.

B.2 Proof of Theorem 3.1 (b)

We need some concepts from classical algebraic geom-
etry. Throughout, C denotes an affine algebraic plane
curve, T a line tangent to C, E an arbitrary point in
the plane, and T the set of all tangent lines to C.

Definition B.1 The foot point fT (E) of E with re-
spect to T is the closest point to E on T . The pedal
curve πE(C) of C with respect to E is πE(C) =
{fT (E) : T ∈ T }. The orthotomic curve oE(C) of
C with respect to E is the trace of all reflections of E
across T , as T ∈ T .
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Observation B.2 Because reflecting a point in a line
means going twice as far as towards the foot point,
the orthotomic curve oE(C) is just πE(C) scaled by a
factor of 2 from the point E.

Now fix a quadric Q in the plane, which will usually
be a circumference of radius 1 centered at E. It induces
a polarity, classically called a reciprocation, between
points and lines in the plane.

Definition B.3 The polar line p⊥ of a point p with
respect to Q is the line through the points on Q whose
tangents pass through P . The polar point or pole H⊥

of a line H is the intersection of the tangent lines to Q
at the intersections of Q with H.

Thus, the operations p 7→ p⊥ =: H and H 7→ H⊥

are inverses of each other. See [A1] for a more extensive
discussion and the extension to higher dimensions.

Definition B.4 The polar reciprocal curve ρQ(C) of
C w.r.t Q is ρQ(C) = {T⊥ : T ∈ T }.

Proposition B.5 (The Dual Conic Theorem)
(cf. [A2, Section 9.3]) If Q,Q′ are conics, then ρQ(Q

′)
is also a conic.

Here is a much older definition for the special case
where Q is the circumference of radius r centered at E:

Definition B.6 (cf. [A3, §VII.233]) The polar recip-
rocal curve ρE,r(C) is the locus of points Z such that

|E fT (E)| · |EZ| = r2, where T ∈ T .

The advantage of this older definition is that it
immediately makes clear the following result:

Proposition B.7 Let Q be the circumference of ra-
dius 1 centered at E. Then the polar reciprocal curve
ρE,1(C) is the inversion with respect to Q of the pedal
curve πE(C). □

We can now prove Theorem 3.1 (b):

Proof. Let C = γ(F) = γ be the gear curve of the
family of antiparallelograms, which is a conic by Theo-
rem 3.1 (a). The point F traces the orthotomic oE(γ),
which by Observation B.2 is a copy of the pedal curve
πE(γ), scaled from E by a factor of 2. The point F ′

is the inversion of F around the unit circle centered
at E, so it traces 1

2 times the inversion of the pedal
curve πE(γ). By Proposition B.7, πE(γ) is the inverse
of the polar reciprocal curve ρE,1(γ), whence F

′ traces
1
2ρE,1(γ), where the scaling happens from E — and
this trace, by definition, is just the inverted trace σ(F).
But by Proposition B.5, the polar reciprocal ρE,1(γ)
of the conic γ with respect to the unit circle centered
at E is a conic, and we conclude that the inverted
trace σ(F) = 1

2ρE,1(γ) is also a conic. □

B.3 Proof of theorem 3.1 (c)

When the coupler curve is inverted, any point coincid-
ing with the center of inversion gets mapped to infinity.
Since the center of inversion F and the trace point E
are mirrors about the line of symmetry, and as the gear
conic γ is the envelope of this line, when F is inside
of γ it will not lie on any line of symmetry. As such,
E will always be distinct from F , so no point on the
coupler curve will be sent to infinity. The only conic
without points at infinity is the ellipse, cf. Figure 1.
If F is on γ, it will lie on the line of symmetry exactly
once, so there will be exactly one point at infinity in
the resulting conic, yielding a parabola, cf. Figure 6.
Finally, if F is outside of γ, it will lie on two distinct
lines of symmetry, resulting in two points at infinity,
so the inverted coupler curve will be a hyperbola, cf.
Figure 7.

Definition B.8 The strict transform (under inversion
in the unit circumference) of a polynomial f(x, y) is
the polynomial r2mf(x/r2, y/r2) obtained from the
rational function f(x/r2, y/r2) by multiplying it with
the smallest power of r2 that removes the denominator.

B.4 Proof of Theorem 3.2

In addition to the statement, we will additionally show
that the strict transforms of f in cases (3.1) and (3.2)
are, respectively,

r2f = a r2 + bx x+ by y + c, (B.2)

r4f = g(2)(x, y) + bx x+ by y + c, (B.3)

where f =
∑

i≥0 fi/r
2i is the inversion of f .

To see all this, let f =
∑d

e=0 fe(x, y) ∈ R[x, y] be a
polynomial of degree d with homogeneous parts

fe(x, y) =
∑

i+j=e

aij x
iyj ,

and assume that r2 := x2+y2 does not divide f . Note
that the inversion of f is

f =
∑
i≥0

fi
r2i

,

where almost all terms in this expression are zero.
If fi ̸= 0, we factor fi = r2kif ′

i by dividing out the
highest possible power of r2. Then deg f ′

i = i−2ki ≥ 0,
so that ki is constrained by

0 ≤ ki ≤ i/2. (B.4)

This factorization yields

f =
∑
i≥0

f ′
i

r2i−2ki
,
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and we multiply this expression by the largest power

2m := max
{
2i− 2ki : i ≥ 0, fi ̸= 0

}
(B.5)

of a denominator, to obtain

r2mf =
∑
i≥0

f ′
i r

2(m+ki−i).

The i-th term in this polynomial is of degree

(i− 2ki) + 2(m+ ki − i) = 2m− i,

so in order for r2mf to be a conic, i.e., 2m − i ∈
{0, 1, 2}, the only non-zero terms must be the ones
with i ∈ {2m − 2, 2m − 1, 2m}. Substituting these
values into (B.5) and dividing by 2 shows that m is

max
{
2m− 2− k2m−2, 2m− 1− k2m−1, 2m− k2m}. (B.6)

We now distinguish cases according to which term
in (B.6) achieves the maximum:

(1) If the maximum is achieved by the first term,
m = 2m− 2− k2m−2, then

• k2m−2 = m− 2;

• m ≥ 2m − 1 − k2m−1, i.e., k2m−1 ≥ m − 1.
Because also k2m−1 ≤ m − 1

2 by (B.4), we
conclude that k2m−1 = m− 1.

• m ≥ 2m − k2m, i.e., k2m ≥ m. Using (B.4)
again, we arrive at(
k2m−2, k2m−1, k2m

)
=

(
m− 2,m− 1,m

)
.

(2) If the maximum is achieved by the second term,
m = 2m− 1− k2m−1, then

• k2m−1 = m− 1;

• m ≥ 2m− 2− k2m−2, i.e., m− 1 ≥ k2m−2 ≥
m− 2 using (B.4);

• m ≥ 2m − k2m, which as in case (1) again
yields k2m = m. We conclude that(
k2m−2, k2m−1, k2m

)
=

(
m−1−δ,m−1,m

)
,

for some δ ∈ {0, 1}.

(3) Finally, if the maximum is achieved by the third
term, then m = 2m− k2m, so that

• k2m = m;

• m ≥ 2m− 2− k2m−2 so that again k2m−2 =
m− 1− δ as in case (2);

• m ≥ 2m− 1− k2m−1, so that again k2m−1 =
m− 1 as in case (1), and therefore(
k2m−2, k2m−1, k2m

)
=

(
m−1−δ,m−1,m

)
,

with δ ∈ {0, 1}.

These results yield the following table:

i 2m− 2 2m− 1 2m

ki m− 1− δ m− 1 m

deg f ′
i = i− 2ki 2δ ∈ {0, 2} 1 0

exponent 2(m+ ki − i) of r 2− 2δ ∈ {2, 0} 0 0

With this data, the polynomials f whose inversion
is a conic and their strict transforms are

f =
∑
i≥0

r2kif ′
i

= r2(m−1−δ)(f ′
2m−2)

(2δ) + r2(m−1)(f ′
2m−1)

(1) + r2m(f ′
2m)(0)

r2mf =
∑
i≥0

r2(m+ki−i)f ′
i

= r2−2δ(f ′
2m−2)

(2δ) + (f ′
2m−1)

(1) + (f ′
2m)(0).

Writing

(f ′
2m−2)

(2δ) =

{
a if δ = 0

g(2)(x, y) if δ = 1,

(f ′
2m−1)

(1) = bx x+ by y,

(f ′
2m)(0) = c,

where g(2)(x, y) is a homogeneous polynomial of de-
gree 2, this expresses f as{

r2m−2
(
a+ bx x+ by y

)
+ c r2m if δ = 0

r2m−4g(2)(x, y) + r2m−2
(
bx x+ by y

)
+ c r2m if δ = 1

or{
r2m−2

(
a+ bx x+ by y + cr2

)
if δ = 0

r2m−4
(
g(2)(x, y) + r2

(
bx x+ by y

)
+ c r4

)
if δ = 1,

with strict transforms

r2mf =

{
a r2 + bx x+ by y + c if δ = 0

g(2)(x, y) + bx x+ by y + c if δ = 1.

Supposing additionally that r2 does not divide f yields
m = 1, resp. m = 2, and the claim.
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