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Preservation of Euclideaness in oriented matroids and applications
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1 Introduction

These results are mainly from the preprint [9] from
2025 and were already presented at EuroCG2025 in a
geometrical way. We add here some more results and
use the more formal language of oriented matroids.
For the details of oriented matroid (programs), we
refer to [1], Chapters 3,4 and 10. An oriented matroid
program is a triple (O, g, f) where O is an oriented
matroid with groundset En∪̇{f, g} such that f ̸= g
are not loops or coloops. Two cocircuits X and Y of
an oriented matroid are neighbours iff they are confor-
mal — meaning that sep(X,Y ) ̸= 0, i.e., no elements
separate them — and comodular, which means that
the zeroset of X ◦ Y has corank 2 in the underlying
matroid. The cocircuit graph Gf of an oriented ma-
troid program has as vertices the cocircuits of O \ f
with g = +, where edges connect cocircuits that are
neighbours in O \ f .

We briefly describe the geometrical intuition behind
this situation in the case where the oriented matroid is
realizable. In this case, the elements other than f and
g correspond to an arrangement of affine hyperplanes,
the element g represents the hyperplane at infinity, and
f represents an objective function. (In a homogeneous
representation all these things correspond to vectors
in Rd: the affine hyperplane ax = b is represented
as a vector (a, b), the hyperplane at infinity as the
vector (0, 1), and the objective function as a vector
(v, ∗) where v is its gradient and * is an arbitrary
real number, irrelevant for the rest (it can be taken
to be 1). Then cocircuits correspond to vertices of
the affine hyperplane arrangement, and two of them
are neighbours if and only if they are adjacent in
the 1-skeleton of the arrangement. In fact, the 1-
skeleton of the arrangement is the ”cocircuit graph”
referred in the rest of the paper. In general, oriented
matroids correspond to arrangements of pseudospheres,
where a pseudosphere of rank d − 1 is a subset of
the standard sphere Sd homeomorphic to Sd−1 (see
[3]). An oriented matroid is realizable, if and only
if its pseudosphere arrangement is ”stretchable” —
that is, there exists a hypersphere arrangement (or
a homogenized affine hyperplane arrangement) that
carries the same combinatorial information. Note that
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we primarily consider non-realizable oriented matroids
here.

In an oriented matroid program (O, g, f), we direct
an edge between two adjacent cocircuits X and Y
with Xg = Yg = + as follows: Cocircuit elimination
of g between −X and Y yields a unique cocircuit Z
and the edge is directed from X to Y (or vice versa,
or it stays undirected) if Zf = + (or Zf = − or
Zf = 0). An oriented matroid program is Euclidean
iff its cocircuit graph Gf has no directed cycles and
an oriented matroid is Euclidean iff all its programs
are Euclidean. The lexicographic extension O ∪ p =
O[eα1

1 , . . . , eαr
r ] where αi ∈ {+,−} for all 1 ≤ i ≤ r is

defined as follows, see [1], Proposition 7.2.4: For all
cocircuits X in O holds Xp = αiXei where i is the first
index such that Xei ̸= 0 and Xp = 0 if Xei = 0 for all i.
Then, p and e1 are inseparable elements, which means
Xp = α1Xe1 for all Xe1 ̸= 0 and Xp ̸= 0. We call a
mutation M of an oriented matroid a simplicial region
in the corresponding pseudosphere arrangement, see
[1], Chapter 7.3. Let M = [e1, . . . er] where the ei are
adjacent to M .

2 Main theorem

While in general inseparable extensions of oriented
matroids do not preserve Euclideaness, for the lexico-
graphic extension holds the following theorem:

Theorem 1 (Hochstättler/ Wilhelmi, 2025)
Lexicographic extensions preserve Euclideaness.

This is [4], Theorem 1.2, the main result of that paper.

3 An application of Theorem 1

With Theorem 1 the following can be shown:

Theorem 2 ([9] Theorem 13) Each element in a
Euclidean oriented matroid of rank and corank ≥ 3
(without coloops) has at least 3 adjacent mutations.

Proof. [Sketch] We find (mostly, we omit other cases
here) to each element f another separable element g.
Then (O, g, f) is Euclidean and the subgraphs G+ resp.
G− of Gf of cocircuits having g = + and f = + resp.
f = − are not empty. We have no directed cycles in
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G+, hence there must be a source X in G+ which is
a cocircuit of a mutation M1 adjacent to f (see also
[7], Theorem (VI), III, page 318). Analogously, we
obtain a mutation M2 adjacent to f with a cocircuit
of G−. Let now O ∪ f ′ = O[f, . . .] be a lexicographic
extension of O. Then f ′ intersects the two mutations
M1 and M2 and Theorem 1 yields Euclideaness of
(O∪ f ′, f ′, f). There must be a mutation M3 adjacent
to f but not to f ′, hence different to M1 or M2. □

4 Preservation of Euclideaness by mutation-flips

In uniform OMs each mutation corresponds to a
mutation-flip, we can ‘flip’ the mutation and get a
new oriented matroid called a mutant of the old one,
see [1], Theorem 7.3.9.

Theorem 3 ([9], Lemma 21) Let (O, g, f) be a
Euclidean uniform oriented matroid program having
a mutation M adjacent to f but not to g. Then
(O′, g, f), where O′ is obtained from O by flipping of
the mutation M , remains Euclidean

Proof. [Sketch] The cocircuits in O′ having g = 0
are the same like in O. Hence the directions of the
edeges between two cocircuits outside of the mutation
M do not change. It remains to show that cocircuits
adjacent to the mutation M can never be part of a
directed cycle. This is obvious for all cocircuits X of
M having Xf = 0 and for the only cocircuit Y of M
with Yf ̸= 0, all edges from Y to other cocircuits of
the graph outside of the mutation must have the same
direction. □

5 Applications of both theorems: Mandel OMs

An oriented matroid is Mandel iff it has an extension
g in general position such that the programs (O, g, f)
are Euclidean for all f ̸= g. Theorem 1 yields that
Euclidean oriented matroids are Mandel. We show:

Theorem 4 ([9] Theorem 17 and 18) A uniform
rank-4 (or minimal non-Euclidean) oriented matroid
is Mandel if it has a Euclidean mutant.

Proof. [sketch] We give here only the construction of
the ‘Mandel-extension’. The proof of that theorem uses
Theorem 3 and Theorem 1, see also [2] for a geometric
description. Let OM be the Euclidean mutant of O
where the mutation M is flipped and let f ∈ M . Let
Of ′ = O[f, . . .] be a lexicographic extension of O.
Then Of ′ has a new mutation M ′ = M \ f ∪ f ′. We
flip Of ′ on the mutation M ′ and obtain Of ′,M ′ . Then
f ′ in Of ′,M ′ is our desired extension. □

This gives us many non-Euclidean but Mandel OMs
e.g. the uniform OMs with 8 elements have all a
Euclidean mutant. On the other hand, not all OMs

are Mandel. It is shown in [7] and in [6] that each
element in a Mandel oriented matroid has an adjacent
mutation. Three OMs with mutation-free elements
are known. The first (with 20 elements) was the R(20)
found by Richter-Gebert in 1993, see [8]. Hence not
all OMs are Mandel. Furthermore, it holds:

Theorem 5 ([9], Theorem 10) There is an OM
with no mutation-free elements which is not Mandel.

Proof. [sketch] The R(20) has exactly one mutation-
free element f . We extend it lexicographically with
an element f ′ inseparable to f . Then there is a new
mutation adjacent to f and to f ′. All other mutations
stay as they are, hence all elements have adjacent
mutations. It is easy to see that the extension cannot
be Mandel, because otherwise the R(20) would also
be Mandel. □

6 Totally non-Euclideaness

An oriented matroid program is totally non-Euclidean
iff it has no Euclidean oriented matroid programs.
We know from computer help that the R(20) (hence
also its dual, see [1], Theorem 10.5.9) is totally non-
Euclidean but we will give a proof by hand in an
ongoing paper. It would be nice to find other totally
non-Euclidean OMs not having these two OMs as a
minor. Our final result concerns the mutation-graph
(which is the graph having (all or a class of) oriented
matroids as vertices where mutants are connected by
edges):

Theorem 6 ([9], Corollary 4) Each path in the
mutation-graph of uniform OMs from a Euclidean
to a totally Non-Euclidean OM has length ≥ 3.

Proof. [sketch] LetO be a Euclidean uniform oriented
matroid having two mutations M1 amd M2. After
flipping M1, we obtain O1where the programs with
f ∈ M1 and g /∈ M1 (or vice versa) stay Euclidean
because of Theorem 3. Then, after flipping M2 the
programs with f ∈ M2 \M1 and g in M1 \M2 (and
vice versa) stay Euclidean as well as the programs with
f ∈ M1 ∩M2 and g ∈ M c

1 ∩M c
2 . One of the two cases

must appear. Hence, there are still Euclidean oriented
matroid programs after two flips. □

7 Further research

Because the cocircuit graph of a Euclidean OM has
no directed cycles, it yields a partial (extended to a
linear) ordering of these cocircuits. We showed in [5]
that these orderings are always a shelling of the polar
(we say a node-shelling) of the big face lattice and also
a shelling of the Las Vergnas lattice of an oriented
matroid, see [1], Chapter 4 for the notions. It is an
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open question if these two lattices are shellable or
not, at least we can show that for Euclidean oriented
matroids, they are. In an upcoming paper (joint work
with W.Hochstättler) we will show that the R(20)
has regions where some programs are still Euclidean.
By glueing together different node-shellings of these
regions we will show that at least a halfspace of the
R(20) has a node-shelling.
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