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Crossing-free monochromatic trees for bicolored point sets
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Abstract

We study the problem of connecting the points of a
bicolored point set S = R ∪ B by monochromatic
non-overlapping geometric trees. As has been done
for similar geometric problems, we characterize the
minimum number of trees required in terms of the
number τ of non-monochromatic edges in the convex
hull of S. A novel algorithm to construct this forest is
presented; the construction aims to maintain the trees’
diameter long and also provides an intuitive reason
why the number of trees required depends only on the
border configuration and not on the interior points.

1 Introduction

Among the many geometrical problems surveyed by
Kano and Urrutia [3] for discrete colored point sets, one
surprising fact is that in some strong results obtained
for a bicolored point set in the plane, the conditions
required depend only on the properties of the configu-
ration of the points in the boundary of its convex hull,
and not on the distribution of the points on the interior.
More precisely, for a bicolored set S = R∪B ⊂ R2 of n
points in the plane, of which the ones in R are red and
the ones in B are blue, the number τ of segments of
the convex hull of S having end points of different col-
ors governs the minimum number of crossings needed
to draw both: an alternating 1-plane Hamiltonian cy-
cle [2], and a couple of monochromatic simple covering
geometric trees (max{τ/2− 1, 0} crossings) [4].
Here, we focus our attention on the problem of

connecting bichromatic point sets by non-crossing
monochromatic geometric trees with the initial aim of
characterizing the minimum number of trees required.
This problem has been previously studied by Aich-
holzer et al. [1]; there an O(n log n)-time algorithm
that finds a single spanning tree for B and a forest
of max{τ/2, 1} trees covering R is given. This algo-
rithm is based on a triangulation of the point set and
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permits the connection of the red parts to reach Toku-
naga’s minimum number of crossings for a couple of
monochromatic simple covering geometric trees [4].
Our contribution to this problem is first to prove

that no forest of red and blue trees of less than
max{τ/2 + 1, 2} members can be constructed without
crossings and then to present an alternative algorithm
that makes use of successive convex hull layers to con-
struct a forest composed of caterpillar trees or trees
formed by linkage of caterpillar parts. An implemen-
tation strategy that allows our algorithm to run in
O(n log n) time is presented.

2 Monochromatic forest cardinality

For an arbitrary set X ⊂ R2, the notation X stands
for the convex hull of X, and ∂X is the boundary of
X. X is monochromatic and red if X ∩ S ⊂ R (resp.
blue if X ∩ S ⊂ B).

A geometric graph G = (V,E) is a graph embedded
in the plane with its vertices being a finite set V ⊂ R2

of points and its edge set E consisting of closed line
segments whose end points lie in V . G is monochro-
matic if its segments are monochromatic; if it is simple
and acyclic it is a V -tree.

In this context, Tokunaga’s Theorem [4] relates the
minimum number of intersections between a R-tree
and a B-tree, denoted by f(R,B), with the number
τ = τ(R,B) of closed segments of ∂S that are non-
monochromatic. The relation is:

f(R,B) =

{
0 if τ = 0,
1
2τ(R,B)− 1 if τ > 0.

(1)

We prove the following simple lemma.

Lemma 1 For any couple of simple geometric trees
TR and TB having the minimum number of intersec-
tions possible, and hence realizing Equation (1), every
edge of TR intersects at most one edge of TB . And vice
versa, every edge of TB intersects at most one edge of
TR.

Then, let h(R,B) denote the cardinality of a small-
est monochromatic forest of S, that is, a set of
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monochromatic pairwise non-overlapping simple geo-
metric trees Ti = (Vi, Ei) such that

⋃k
i=1 Vi = S.

At first glance, it is conceivable that for a specific
configuration of points, a monochromatic forest of less
than 2 + f(R,B) = max{τ/2 + 1, 2} trees could be
found. This would be possible if, for connecting the
forest into only two trees TR and TB, at least one
double crossing (a single edge crossing two edges) were
to be always required. The next result, proven by
induction on n shows this is not possible.

Theorem 2 If R = ∅ or B = ∅, then h(R,B) = 1.
Otherwise, the following relation holds:

h(R,B) = f(R,B) + 2 =

{
2 if τ = 0,
1
2τ + 1 if τ > 0.

The following section briefly describes the algorithm
that constructs the monochromatic forest.

3 Monochromatic Forest Construction Algorithm

The algorithm starts from an empty forest F = ∅ and
adds points of S to the forest until no more points
remain. As an initialization step, the points of S ∩ ∂S
and the value τ = τ(R,B) are computed. Then there
are three different cases: case-1 is when τ = 0, case-2
is when τ = 2, and case-3 is when τ ≥ 4.

Case-2 gets the bulk of the work; it either terminates
or is reduced to two caterpillar trees and a sub-problem,
which is itself also in case-2. For a given input triplet
(S,R,B), a sub-problem is another triplet (S′, R′, B′)
composed of a subset S′ ⊂ S and its induced coloring
R′ = R ∩ S′ and B′ = B ∩ S′ for which the algorithm
can be applied recursively.
In the nontrivial instances of case-1 there are still

points of both colors, and the convex hull of one of
the colors is contained in the convex hull of the other,
say B ⊂ R. Then, the general idea is to construct an
outer red caterpillar tree using all but one segment of
∂R as a backbone through a sweeping procedure and
leaving a subproblem in case-2.

In case-2, the general idea is to construct two outer
caterpillar trees that include the two monochromatic
runs of ∂S as backbones with sweeping procedures
analogous to that of case-1, and then join them to
a central sub-problem that contains the inner points
S′ = S∩B∩R and is again in case-2. The construction
needs some care to avoid configurations where just the
inner points are not a case-2 subproblem. The result
consists of two caterpillar trees that wind themselves
into each other.

In case-3 the idea is to iteratively solve sub-problems
from S that are themselves in case-2. The bound-
ary ∂S is composed of τ runs connected by τ non-
monochromatic segments. The runs alternate in color,
so starting at an arbitrary run, say it is red, the far-
thest points of the two neighboring blue runs b1 and b2

are selected to divide an initial subproblem. Then, ad-
ditional subproblems are processed similarly as shown
in the example of Figure 1.

Figure 1: Case-3 example.

An example of the type of caterpillar trees obtained
by the algorithm for a set with |R| = |B| = 55 in
case-2 is shown in Figure 2.

Figure 2: Case-2 example, caterpillars.

For the same example of Figure 2, the obtained
caterpillars can be flattened in a secondary process
producing two paths, as is shown in Figure 3. Al-
though for well-blended homogeneously distributed
configurations of points, this can usually be done, it is
not always possible. Example configurations of points
in case-2 can be devised for which two non-overlapping
paths do not exist.
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Figure 3: Case-2 example, paths.

Using the Delaunay triangulations of R and B as
routing graphs data-structures an implementation of
the algorithm can achieve the following result.

Theorem 3 Let S = R ∪ B be a bicolored set of n
points in the plane in general position. If τ(R,B) ≤ 2,
then two disjoint non-crossing monochromatic cater-
pillar trees can be constructed in O(n log n) time and
O(n) space. If τ(R,B) > 2, a forest of τ(R,B)/2 + 1
non-overlapping monochromatic trees composed of con-
catenated caterpillars can be constructed in O(n log n)
time and O(n) space.

To conclude, an additional example, again in case-2,
but for a smaller set |R| = |B| = 20 is presented in
Figure 4. There, the results obtained from the novel
large-diameter algorithm (label A) are compared to
the small-diameter algorithm (label B) from [1].
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Figure 4: Algorithm comparison example.
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