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Guillotine coarseness of bicolored point sets in the plane
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3Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Santiago, Chile.
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1 Introduction

The concept of the coarseness of a bicolored set of plane
points S = R ∪B was originally introduced by Bereg
et al. [1] in order to measure how blended the red
and blue points are. Let the bichromatic discrepancy
∇(X) be the absolute difference between red and blue
points in any X ⊂ S. Then the coarseness of S is
defined to be C(S) = maxΠ minX∈Π ∇(X), where the
maximization is taken over the convex partitions Π
of S, that is partitions whose members have pairwise
nonintersecting convex hulls.

This definition has several desirable properties that
relate to the data-mining task of assessing whether
a dataset has a tendency to be clustered successfully.
However, the direct computation of C(S) is challeng-
ing, even being conjectured as NP-hard, so several
modifications have been studied in the literature.

2 Guillotine coarseness

In this context, we present the ideas recently published
at Fernandez et al. [3]. A naive, exponential time algo-
rithm is described to compute the general coarseness.
Then, two modified definitions are introduced by re-
stricting the available partitions in the maximization
of the general definition. The first one, named Guillo-
tine coarseness Cg(S) allows only guillotine partitions
of S; i.e., partitions that can be achieved by successive
axis-aligned straight cuts of the plane. Then, a further
restriction is imposed by allowing only a single step of
vertical cuts followed by a step of horizontal cuts or
vice versa, this measure is called Two level guillotine
coarseness CTLg(S) and we have for any S:

CTLg(S) ≤ Cg(S) ≤ C(S). (1)
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Leveraging on theoretical properties regarding the
coloration of adjacent parts in an optimal guillotine
partition and making use of two geometric data struc-
tures: range-trees and the MSC-trees of Cortes et
al. [2], polynomial time dynamic programming algo-
rithm algorithms are devised for both novel measures,
leading to

Theorem 1 Given a set S of n bicolored points in the
plane Cg(S) can be computed in O(n5) time and O(n4)
space and CTLg(S) can be computed in O(n2 log2 n)
time and O(n2) space.

3 Computational experiments

Finally, computational experiments are presented to
demonstrate the performance of the proposed algo-
rithms in practice. The naive approach to C(S) is
implemented and deployed on small instances of the
benchmarking dataset proposed by [4]. The dynamic
programming approaches for Cg(S) and CTLg(S) are
tested over the full dataset, showing encouraging re-
sults in terms of time performance when compared to
the alternative approach of [4].
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