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Abstract

We present a novel method, called KNaN, for point
classification inspired by a recent generalization of Sib-
son’s interpolation formula to higher-order Voronoi di-
agrams. An experimental study shows that KNaN per-
forms very well, also when compared with the widely
used KNN-method. For our method, we present an al-
gorithm to construct the region of the order-k Voronoi
diagram of a data set modified by a query point. This
generalizes the incremental algorithm for Voronoi dia-
grams of order 1 to Voronoi diagrams of order k > 1.

1 Introduction

Supervised learning is a key technique in machine
learning, where a model is trained using a labelled
dataset, with each input paired with a known output
or class. From this training set, the model learns to
predict or classify new data. One of the most used
classification methods is k-Nearest Neighbours (KNN),
developed in [4, 6]. KNN is a simple, yet effective
algorithm that classifies a data point based on the
majority class of its nearest neighbours in the feature
space. It is commonly used in various applications
such as image recognition, recommendation systems,
and medical diagnosis. See e.g. [13] for a recent survey.

In this paper, we propose another method for point
classification, which is based on Sibson’s interpolation
formula. Let S be a set of n points in general position
in Rd. The order-k Voronoi diagram of S, Vk(S), is a
subdivision of Rd into cells such that points in the same
cell have the same k nearest points of S. Sibson [11]
obtained a formula to express a point q of S as a
convex combination of other points of S, using the
ratios of the volumes of intersections between the cells
of V2(S) and the cell of Q in V1(S). This was the basis
for the natural neighbour interpolation [12]. Natural
neighbour interpolation assigns values to unknown
points by applying the same ratios of Sibson’s formula
to the values of known points.

In our previous work [2], we generalized Sibson’s for-
mula to Voronoi diagrams of any order. This general-
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ization expands the applicability of natural neighbour
interpolation by allowing the method to work with
higher-order Voronoi diagrams instead of considering
only the first-order Voronoi diagram. Given Vk(S) and
a point p ∈ S, the region Rk(p) of p is defined as the
union of cells of Vk(S) that have the point p as one of
their k nearest neighbours. We denote a cell of Vk(S)
as f(Pk) where Pk ⊂ S is the subset of the k nearest
points from S to each point in the cell. Let qℓ ∈ S.
If Rk(qℓ) is a bounded region, with 1 ≤ k ≤ n − 2,
then qℓ can be expressed as a convex combination of
other points of S as follows [2]; σ denotes the Lebesgue
measure on Rd.

qℓ =
∑

f(Pk)∈Rk(qℓ)

∑
f(Pk+1)∈Vk+1(S)

qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))

σ(Rk(qℓ))
qj .

Our proposal introduces a classification method using
this generalization of Sibson’s formula. Similarly to
the KNN method, our method uses a parameter k to
define the order of the Voronoi diagram considered in
the analysis. However, unlike KNN, which assigns a
class based on the most frequent label among the k
nearest neighbours, in our approach the class assigned
to the unknown point is determined by the highest
cumulative value of Sibson’s formula coefficients among
its order-k natural neighbours of the same class. See
Figure 2 for an example with k = 1. Although the
classification described works for any dimension, here
we only consider point sets in dimension d = 2. Our
method is called KNaN, which stands for Order-K
Natural Neighbours. Our method differs from other
classification methods that use natural neighbours,
such as ENN and its variants [14]. In KNaN, we need
to calculate the region Rk(q) of a query point q in
the plane that we want to classify; this is described in
Section 2. This also yields an algorithm to construct
Vk(S) that extends the classic incremental algorithm to
construct V1(S). Section 3 discusses some more details
of KNaN, followed by some experimental results in
Section 4.

2 Point insertion in Vk(S)

Let S = {p1, . . . , pn} be a set of n points in general
position in the plane. Given the Voronoi diagrams
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Vk−1(S) and Vk(S), and a point q /∈ S, in this section,
we describe an algorithm to construct Rk(q), that is,
the region of point q in Vk(S ∪ q).

Our algorithm is a generalization of the 1978 incre-
mental insertion algorithm by Green and Sibson [7],
to construct a first-order Voronoi diagram; with com-
plexity O(n2). Several improvements to the original
algorithm have been made, including an algorithm
with an expected running time O(n) [9], which is
the best possible. Regarding the construction of the
order-k Voronoi diagram, the algorithm with the best
running time is a randomized algorithm given in [1]
with expected complexity O(n log n + nk). We refer
the reader to [1] for a recent review of previous results
on algorithms for Vk(S). The algorithm we present
here to construct Rk(q) is a deterministic algorithm
with complexity O(k(n − k)); this algorithm can be
extended to construct Vk(S ∪ q).

2.1 The algorithm

Suppose that we have already constructed Vk(S), and
now we want to add a new site q. First, we construct
the boundary of the region Rk(q) of q, then remove
the substructure of Vk(S) inside Rk(q), and add all the
vertices and edges of Vk−1(S) that lie in the interior
of Rk(q).

A central part of the algorithm is the computation
of the boundary of Rk(q). To do this, find f(Pk), the
cell of Vk(S) that contains q; Pk ⊂ S is the set of sites
that define the cell. Let p denote the point in Pk far-
thest from q. Consider Rk(p), the region of p in Vk(S).
Since Rk(p) is star-shaped, the perpendicular bisector
b(p, q), between p and q, crosses its boundary at at
least two points; construct these two points w and
w1. These are vertices of Rk(q). The circle centred
on w1 and passing through points {p, q} also passes
through some other point in S, call this point r1. All
this is illustrated in Figure 1a. Starting with w1, we
construct the boundary of the region Rk(q) as follows.
Draw the directed line segment −−→w1w until it crosses
the boundary of either Vk−1(S) or Vk(S). In either
case, the intersected edge must be a bisector between
p and some point in S, say r2. The centre of the circle
{q, p, r2} is a vertex of Rk(q); let this point be w2; re-
fer to Figure 1a. Restart the process with the bisector
between q and r2, and repeat this procedure until we
reach the starting point w1. Let (w1w2, . . . , wmw1) be
the constructed sequence of segments. This sequence
forms the counter-clockwise boundary of Rk(q); the
boundary of R3(q) is shown in Figure 1b. The proce-
dure described works only when Rk(q) is bounded; the
case for unbounded regions is considered in Section 3.

In order to present the pseudocode of the algorithm,
we must first take care of some details. We distinguish
two types of vertices [3]: those appearing in both
diagrams Vk−1 and Vk are of type I, and those only

r2
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q

p
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w

w2

(a) V2(S) and V3(S) are shown in green and black;
R3(p) is shown in pink.
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(b) The boundary of R3(q) is shown in blue.

Figure 1: Illustration of the computation of δRk(q).

appearing in Vk are of type II. In what follows, we
assume that both diagrams are given as an input to the
algorithm and that each diagram is stored in the data
structure known as dcel. We follow the definition
of dcel given in [5], with some modifications. Due
to the restricted space, we refrain from describing
the data structure in detail. The modifications are
as follows. If v ∈ Vk(S) is a type II vertex, then v
must have a record in Vk and a record in Vk−1; we
link these records using a pointer called Pair(v). If
v is of type I then Pair(v) is nil. Each site s ∈ S is
stored in the dcel; the site record of a site s stores
its coordinates and a pointer to one half-edge for each
face bounded by some bisector formed by s and some
other site. A half-edge e⃗ bounds the face to its left. A
half-edge e⃗ that belongs to a perpendicular bisector
b(i, j) has the ordered pair i, j as a label if i is to the
left of e⃗ and j is to its right; Twin(e⃗) has the label
j, i. Each record half-edge e⃗ stores its label in a field
called Label(e⃗); Label(e⃗).i returns the first entry and
Label(e⃗).j returns the second entry.
First, we have to address how to compute the in-

tersection of the boundary of Rk(p) with the bisector
b(p, q). Recall that p denotes the point in Pk farthest
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from q. Denote the boundary of Rk(p) by δRk(p).
By construction, the record of p contains a pointer
to some half-edge in δRk(p); let this half-edge be e⃗.
Navigate the boundary of Rk(p), in the direction of
e⃗, asking in each half-edge if there is an intersection
with the bisector. When we encounter the special case
in which the half-edge is not bounded, we return to
the start vertex and navigate the boundary in the
direction contrary to e⃗. The pseudocode of the algo-
rithm is shown in the Appendix A, Algorithm1; it has
complexity O(|δRk(p)|). Note that we are assuming
that p is given as an input to the algorithm, if this is
not the case, then we must add O(n) time to find the
kth nearest neighbour of q.

Now that we have a point on δRk(q) we can compute
the rest. Initialize a dcel Dp to store Vk−1(S); the
algorithm adds edges and vertices to Dp as needed.
Let e1 be the half-edge returned by Algorithm 1; recall
that a half-edge bounds the face to its left. Let w1 =
b(p, q) ∩ e⃗1, since w1 is a vertex of Rk(q), we add
it to Dp. We wish to choose the end point of e⃗1
that lies inside Rk(q); let us call this point v. v is
the centre of the circle passing through the two points
corresponding to Label(e⃗1) and that contains the point
q. During the execution of the algorithm, e⃗ always
points to v and w stores the last vertex of Rk(q) that
was found. The algorithm works as follows: if v is type
I, we navigate the current face in the direction of e⃗,
checking at each edge whether there is an intersection
with the current bisector b(p, ri) or not; if there is an
intersection, then we update Dp and the bisector, we
also change the face and direction of navigation. Now,
suppose that we are navigating Vk (resp. Vk−1), if
v is of type II then the current face contains inside
vertices and edges from Vk−1 (resp. Vk) [3]. Navigate
through these edges and vertices asking at each edge
whether there is an intersection with the bisector or
not; if there is an intersection, we change face and
direction. The pseudocode of the described algorithm
is presented in detail in the Appendix A, Algorithm 2.
The bisector between points pi and pi+1 is represented
in the pseudocode as the pair of points (pi, pi+1).

The last point we have to address is how to trim the
substructure of Vk−1(S), to keep only what lies inside
Rk(q). Suppose a new vertex w′ of δRk(q) is found
and let e⃗ be the edge, either of Vk−1 or of Vk, which
is currently being processed. If e⃗ is an edge of Vk−1,
then e⃗ and Twin(e⃗) are trimmed: let v = Origin(e⃗),
then e⃗ is now (v, w′) and Twin(e) is now (w′, v). The
incident face of both records remains the same. All
these operations can be handled in constant time each.

Algorithm2 has complexity proportional to the num-
ber of edges of Vk−1 ∪ Vk that it visits. In the worst
case, this number is equal to the number of edges of
Vk−1 plus the number of edges of Vk. The number
of edges, vertices and faces in Vk(S) does not exceed
O(k(n − k)) [8]. However, this upper bound for our

algorithm is far from tight. We believe that its com-
plexity is, in fact, proportional to the size of δRk(q),
since the only edges that are visited are those of the
cells that have non-empty intersection with δRk(q).
The expected size of δRk(p) for p chosen randomly
from S is O(k).

3 KNaN: Order k Natural Neighbours Classifica-
tion

The class of the new point is given by the maximum
between the sums of ratios of the nearest neighbours
belonging to the same class; see Figure 2, and the
formula in the introduction.

Q3

Q2
Q`

Q1

Q6

Q5

Q4

Figure 2: Coloured areas given by the intersections
of f({Qℓ}) and the cells of V2(S) (shown in dashed).
The class assigned to Qℓ is blue, because it is the
colour that occupies the largest area, i.e., blue is the
class associated with the maximum among the sums
of ratios.

The number of natural neighbours of each point
depends on its location within the feature space. In
this sense, our method adapts to the local density and
distribution of the data. This means that unlike KNN
that uses a fixed number of neighbours for all points,
natural neighbour classifications use a flexible neigh-
bourhood size for each point, depending on the data
set. Sibson’s formula only works for bounded faces.
This is a problem in the practical implementation of
the classifier, since there would be points that could
not be classified in this way.

To address the problem described above, we propose
the following strategy for the case of dimension d = 2.
First, we assign a fixed length to each unbounded
edge of Vk(S). Then, we join the new endpoints with
phantom edges, which close the unbounded regions
and allow us to apply Sibson’s formula. Using a suffi-
ciently large length, we approximate the volume ratios
generated inside the face at the intersection with the
faces of Vk+1(S), as the edge lengths approach infinity.
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4 Experimental Results

In this section, we present results that compare the per-
formance of our classifier (KNaN) with the k-Nearest
Neighbours (KNN) algorithm. Standard metrics such
as precision and recall were used to evaluate perfor-
mance in the different synthetic datasets generated.
Since we have already discussed the algorithmic com-
plexity in the previous section, in this section, we are
not going to evaluate or compare execution times.

The Python module Scikit-Learn [10] provides vari-
ous methods for generating synthetic data sets to train
and test machine learning models. These methods cre-
ate data with different distributions. The module also
includes classification algorithms as well as functions
for cross-validation and model evaluation. Following
the example results of Scikit-Learn, we tested the
method for 2-dimensional data sets consisting of 100
points, distributed between two labelled classes. For
the experiments, 60 points were chosen with an equal
representation of each class for the training set, and
the remaining 40 points were used as the test set.
Given the way these datasets are generated, adding
more points increases class density and may cause over-
fitting. In addition, we increased the dataset noise to
simulate more challenging conditions.

After evaluating the performance for different values
of k in each dataset, we have selected the best results
for both our KNaN method and the KNN classifier.
Table 1 presents the optimal results for each approach,
where the results have been chosen according to the
highest accuracy among all the tested values of k. The
metrics listed in the table are the following. Accuracy
(Acc) is the ratio of correct predictions to the total
number of cases evaluated. Precision (P) is the ratio
of true positive predictions to all positive predictions.
Recall (R) is the ratio of the true positive prediction to
the total number of actual positive cases. F1-score (F1)
can be interpreted as a harmonic mean of precision
and recall.

Based on the experiments, both classifiers have sim-
ilar performance. However, when noise is introduced
into the data, our method seems to better preserve
the accuracy of the classification. Furthermore, for
the synthetic data sets tested, k = 2 offers the most
stable performance for our method, whereas for KNN,
k = 3 yields the best results.
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A Pseudocode

Algorithm 1 Computing δRk(p) ∩ b(p, q)

Input: b(p, q), half-edge e⃗ in δRk(p) and with
Label(e⃗).i = p

Output: E one edge in δRk(p) intersected by b(p, q)
1: procedure Rkp(b(p, q), e⃗)
2: E = nil; start = Origin(v)
3: repeat
4: if b(p, q) ∩ e⃗ ̸= ∅ then
5: E = e⃗
6: end if
7: if Origin(Twin(e⃗)) = ∞ then
8: v = start
9: else

10: v = Origin(Twin(e⃗))
11: end if
12: Assign e⃗ to a half-edge g⃗, with e⃗ ≠ g⃗,

Origin(g⃗) = v and Label(g⃗).i = p
13: until E ̸= nil
14: return E
15: end procedure
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Algorithm 2 Computing δRk(q)

Input: w1, e⃗, v, bisector(p, q)
Output: dcel Dq containing δRk(q)
1: procedure Rkq(w1, e⃗, v, (p, q))
2: Add w1 to Dq

3: w = w1

4: bisector = (p, q)
5: if v = Origin(e⃗) then
6: e⃗ = Twin(e⃗)
7: end if
8: repeat
9: if v is of type I then

10: w′ = Next(e⃗) ∩ bisector
11: if w′ ̸= ∅ then
12: Add w′ to Dq

13: Add new edge (w,w′) to Dq

14: w = w′; w′ = ∅
15: bisector = (q, Label(e⃗).j)
16: e⃗ = Twin(Next((e⃗)))
17: else
18: e⃗ = Next(e⃗)

19: v = Origin(Twin(e⃗))
20: end if
21: else
22: Newlabel = Label(e⃗)△Label(Next(e⃗))
23: v = Pair(v)
24: Let e⃗ be the edge incident in v and with

label Newlabel
25: w′ = e⃗ ∩ bisector
26: if w′ ̸= ∅ then
27: Add w′ to Dq

28: Add new edge (w,w′) to Dq

29: w = w′; w′ = ∅
30: bisector = (q, Label(e⃗).j)
31: e⃗ = Twin(e⃗)
32: else
33: v = Origin(Twin(e⃗))
34: end if
35: end if
36: until v = w1

37: return Dq

38: end procedure
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