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Abstract

Autonomous navigation in constrained environments
often leads to deadlocks and collisions, especially in
narrow or crowded spaces. We present a graph-based
behavior modulation integrated into the Navground
simulator, a playground to experiment with navigation
algorithms, to improve the performance of standard
navigation strategies. By modeling proximity relation-
ships between agents and obstacles, the modulation
detects potential blockages and adapts agents’ behav-
ior to prevent them through actions such as yielding
or rerouting. Experiments show a significant reduc-
tion in deadlocks and collisions, demonstrating the
effectiveness of this graph-based approach.

1 Introduction

Recent studies have explored advanced computational
techniques for modeling fleet behavior in dynamic en-
vironments. For instance, [1] developed a data-driven
approach using deep reinforcement learning to opti-
mize fleet routing and mitigate collision risks in ur-
ban settings. The discrete modeling of fleet behavior
presents challenges in ensuring reliability and safety.
Our objective is to improve the safety and efficiency
of autonomous navigation by developing a behavior
modulation that models the agents’ environment by
abstracting their geometric characteristics and focus-
ing solely on the proximity relationships between them
and other objects to prevent collisions and blockages
in narrow or crowded environments.

2 Navground Navigation Simulator

Hinted by its name, Navground[2] is a playground to
experiment with navigation algorithms. At its core,
the simulator operates with multi-agent systems that
carry out specific navigation tasks. An agent A is
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represented as a tuple (p, r, α,m), being p = (px, py)
its center, r its radius, α an orientation indicating
the direction of movement and m a safety margin to
control whether the agent is in danger of a collision, as
shown in Fig. 1. Agent A can detect walls, obstacles,
and other agents (called neighbors) within its horizon
length of 2ℓ. Each agent executes a local navigation
algorithm (called a behavior) that, without communi-
cating with other agents, reactively computes control
commands based on the positions and velocities of
nearby obstacles and neighbors.

Figure 1: An agent with center p =(px, py),
radius r, orientation α and safety margin m.

Navground offers the possibility to create custom
scenarios where to run the simulations. In this work
we have considered the following three to test the
navigation behavior and the proposed graph-based
modulation (see Fig. 2): a) Bowtie scenario, which
represents a 30m long and 3m wide corridor with
both ends connected, with a narrow section of 1.5m
width in the center. This scenario is initialized with
4 agents, 2 navigating to the right, and 2 navigating
to the left. It is used to verify that when the graph-
based modulation is not enabled, the agents have a
frontal collision in the narrow region, but they do not
when the modulation is enabled. b) Crowded Corridor
Scenario, which represents a 30m long and 3m wide
corridor with both ends connected. It is initialized
with 5 agents, 3 navigating in parallel to the right,
and 2 navigating in parallel to the left. Both groups
of agents block the corridor. This scenario is used to
check that when the modulation is not enabled, the
agents do not solve the blockage, causing a frontal
collision in the middle of the corridor, while they do
unblock the corridor when the graph-based modulation
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Figure 2: Top: Bowtie Scenario. Middle: Crowded
Corridor. Bottom: Home Scenario.

is enabled. c) Home scenario, which represents 3 areas
simulating individual rooms, each 3m wide and 6m
long. On the right, there is a rectangle simulating a
5.5m wide and 9m long common area. Between them,
there is a 2.5m wide corridor that can be blocked by
two agents navigating in parallel. The 3 individual
rooms and the common area are connected to the
central corridor through 1.5m wide doors, creating four
local narrow regions. This scenario is initialized with
5 agents where 3 are assigned the task of continuously
traveling back and forth between their individual room
and the common area, crossing the corridor. The
remaining 2 continuously navigate up and down the
corridor. This scenario is used to verify that the graph-
based modulation significantly improves the navigation
behavior in a complex environment.

3 Problem to solve

We aim to avoid two negative events: a) deadlocks, that
occur when agents cannot move due to the positions
of other agents; b) collisions, when an agent collides
with other agents or with static obstacles.

Figure 3: A narrow door (top), where agents navigat-
ing in opposite directions block each other (bottom).

See for example the scenario depicted in Fig. 3.
The agent on the top-left aims to move to the right
through the corridor, while the agent on the top-right
goes to the left. Their optimal speeds are identical,
and they are at the same distance from the central
door, so both will reach the door at the same time

but from opposite directions. The door is not wide
enough to allow two agents to pass simultaneously, so
they block each other.

Figure 4: Crowded corridor scenario with agents navi-
gating in parallel (top), creating a blockage (bottom).

A similar situation occurs in the scenario depicted
in Fig. 4. On the top-left, three agents go in parallel
to the right, while on the top-right, two agents go in
parallel to the left. The agents do not detect that this
formation is obstructive, and when the agents meet
head-on in the middle of the corridor, they block each
other.
To prevent and avoid such potential risks, we pro-

pose an algorithm to modulate any kind of navigation
behavior that the agents may be using.

4 Proposed solution

Each agent, at each time step, gathers information
about its immediate environment such as the posi-
tion, velocity, and size of its nearest neighbors, as
well as the position of fixed obstacles like walls, and
executes a command to achieve its goal (reaching a
target point or following a direction) after an opti-
mization process that depends on its behavior and the
kinematic characteristics of the agent. The proposed
graph-based modulation modifies the agent’s behavior
in two distinct ways: a) a priori, modifying the agent’s
perception of itself and its environment (by creating
virtual obstacles that do not exist in the real envi-
ronment) or its motion parameters (such as optimal
speed or relaxation time) before the motion command
is calculated; b) a posteriori, modifying the motion
command after it has been calculated (by changing its
direction or setting it to zero to make the agent stop).

4.1 Methodology

First, we divide the agent’s neighbors into 3 categories:
a) stuck neighbors, that move at a speed lower than
0.01ms−1; b) same-flow neighbors, that move at a
speed greater than 0.01ms−1 and their orientations
differ from A’s by at most 60o; c) opposite-flow neigh-
bors that move at a speed greater than 0.01ms−1 and
their orientations differ from A’s by more than 60o.
The graph-based modulation treats stuck neighbors
like static obstacles. Opposite-flow neighbors help
manage narrow passages, while same-flow neighbors
help to check if A is in a blocking platoon.
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After splitting A’s neighbors into these three cate-
gories, the next step is to build the so-called F-graph
F = (VF, EF), where: VF is the set of nodes corre-
sponding with fixed obstacles (walls, static obstacles
and stuck neighbors); given two obstacles v1, v2 ∈ VF,
the pair {v1, v2} is an edge of EF if d(v1, v2) < 2r+2m,
which is the minimum space needed for agent A to
pass between them. In particular, adjacent walls are
nodes of VF connected by an edge of EF. See Fig. 5.

Figure 5: Top: An example of a scenario with six walls
as fixed obstacles. Bottom: F-graph of the scenario.

We define the set of narrow pairs as:

N = {{v1, v2} ⊂ VF | 2r+2m < d(v1, v2) ≤ 4r+3m},

that includes pairs of obstacles that let one, but not
two, agents pass at once. In Fig. 5, the narrow pairs
are N =

{
{w2, w3}, {w2, w5}, {w4, w3}, {w4, w5}

}
.

Figure 6: Narrow region of the scenario from Fig. 5.

The narrow region of {v1, v2} ∈ N is defined as:

R({v1, v2}) =
{
p ∈ R2 | d(p, f1), d(p, f2) < 3r + 2m

}
,

and includes the points such that, if an agent’s center
is located there, it blocks passage for its neighbors.
The global narrow region is defined as:

R =
⋃

{v1,v2}∈N R({v1, v2}).

Each connected component of R is called a local narrow
region. Fig. 6 pictures a global narrow region.

Agent A checks for interaction with nearby narrow
regions by projecting a segment of length ℓ (half of its
horizon) from (px, py) in direction α. If it intersects
narrow regions, the closest region, Rmin, is considered.

Then if (px, py) ∈ Rmin, agent A is already blocking
and must move forward to exit Rmin. However, if
the projection intersects Rmin but (px, py) ̸∈ Rmin,
agent A must check if there are other opposite-flow
neighbors near Rmin: a) If there is no opposite-flow
neighbor in front of A or none of them is approaching
Rmin, agent A does not need to modulate its behavior;

b) if there is an opposite-flow neighbor within Rmin,
agent A must stop immediately by setting its optimal
speed to 0; c) if there is an opposite-flow neighbor but
not within Rmin, agent A must decide whether to wait
or continue while the other agent waits. To make this
decision, A uses the trajectory projections and current
velocities of both itself and its opposite-flow neighbor
to estimate which agent will reach Rmin first. If A is
expected to arrive first, it proceeds; otherwise, it stops
until the opposite-flow neighbor clears Rmin.

Same-flow neighbors are not considered in this part
of the procedure because they move in a similar direc-
tion to that of A.

If agent A concludes to not stop in front of a local
narrow region, it has to check if it is part of a platoon
of agents that is blocking a non-narrow region. The
so-called SA-graph SA = (VSA, ESA) is built, where:
VSA is the set formed by the agent A and its same-
flow neighbors; given v1, v2 ∈ VSA, the pair {v1, v2}
belongs to ESA if d(a1, a2) < 2r + 2m. This graph
shows the proximity relationships between agent A
and its same-flow neighbors. Here, an edge between
two nodes indicates that the corresponding agents are
so close that A cannot pass between them.

Figure 7: Top: a corridor scenario blocked by the
yellow agents where A is one of them. Bottom-left
(resp. -right): PA (resp. FPA) graph for agent A.

Next, we consider the PA-graph called A’s platoon,
which is the subgraph of the SA-graph generated by
the path-connected component of A. The next step is
to build the so-called FPA-graph FPA = (VFPA, EFPA)
where: VFPA = VF∪VPA; EFPA = EF∪EPA∪

{
{v1, v2}

with v ∈ VF, w ∈ VPA and d(v1, v2) < 2r + 2m
}
. Fig.

7 shows an example of the PA and FPA graphs for an
agent A in the Crowded Corridor Scenario.

Knowing the F, PA, and FPA graphs, we can decide
whether A’s platoon is blocking. Let C be the set of
vertices of VF that are adjacent in FPA to any vertex
of PA, and let FC be the subgraph of F generated by
the vertices of C. In other words, FC is the graph
formed by the fixed obstacles that are so close to A’s
platoon that it is not possible to pass between them
and the platoon. If C is empty, it means that A’s
platoon is not near any fixed obstacles and therefore it
is not blocking. If C is not empty, and the graph FC is
path-connected, this means that A’s platoon is near a
set of consecutive fixed obstacles, and then A’s platoon
is not blocking. However, if the graph FC is not path-
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connected, this means that there exists a path in FPA
that starts at a fixed obstacle v1, passes through one
or more agents of the platoon, and ends at another
fixed obstacle v2 that is not near v1. That is, the
platoon has created a physical barrier connecting two
fixed obstacles that were initially sufficiently separated
to allow the free movement of other agents in the
opposite direction. This situation is called a blockage.
For example, consider the scenario from Fig. 7 where
C = {w0, w1} being w1 and w2 the two walls that are
adjacent in the FPA-graph to some vertex from the
PA-graph. In the F-graph, the vertices w0 and w1 are
not path-connected because their respective walls are
far enough. This means A and its neighbors form a
blockage spanning from one wall to the other.

When agent A detects that it is part of a platoon
that is creating a blockage, it acts as follows: first,
agent A counts how many neighbors from its platoon
are ahead of it. Suppose it counts n agents ahead. In
that case, it multiplies its optimal speed by (3/4)n,
causing the agents at the front of the platoon to con-
tinue at their usual pace while the agents behind slow
down to create space; second, agent A check how many
neighbors from its platoon are to its right. If there
are none, it does nothing. If there is at least one, it
makes the navigation behavior detect a new virtual
wall having one endpoint in front of A and the other
endpoint to its left. The navigation behavior, seeing
this wall on its left side, will cause the agent A to move
to the right, freeing up space on the left. The agent
will modulate its behavior until it no longer detects
that its platoon is creating a blockage.

After this a priori modulation ends, the behavior
computes the motion. The a posteriori modulation
restores optimal speed and clears virtual walls.

4.2 Experiments

We ran 200 simulations of 120 s each, with all agents
executing the Human-Like (HL) behavior [3], a com-
putationally light algorithm inspired by pedestrian
motion, which follows three steps:1) it selects the best
direction toward the target while avoiding potential col-
lisions by considering a safety margin around the agent
and the velocity of nearby entities; 2) it determines an
appropriate speed that allows the agent to stop within
a safe distance if needed; 3) the velocity is smoothly
adjusted over time to ensure natural movement transi-
tions. In 100 simulations, the agents navigate using
HL without modulation, while in the other 100, the
agents navigate using the modulation. Experiments
with other behaviors are explored in the Appendix.
We introduce randomness into the initialization of the
200 simulations. The 3 agents within individual rooms
always start the simulation in their respective rooms,
but in a random position and orientation, determined
by the seed. Meanwhile, the 2 agents navigating the

corridor always start the simulation facing downward,
but in a different position within the corridor, also
dependent on the seed. After running each simulation,
we counted how many collisions occurred. We slightly
adapted the navground.sim code to better reflect real
count of deadlocks and collisions. A summary of the
number of collisions and deadlocks per simulation can
be seen in Fig. 8.

Figure 8: Collisions and deadlocks between HL behav-
ior with and without graph-based modulation.

Code availability: https://github.com/

Cimagroup/navground_graphs.
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A The Modifications made on Navground.sim

Collisions can either be between two agents or between
an agent and a wall. This count can be done using the
functions provided by the navground.sim module. We
tracked how many of the 5 agents got stuck during the
simulation, meaning they couldn’t move until the end.
To do this, we slightly adapted the navground.sim code
to better reflect real count of deadlocks and collisions.

The navground.sim considers an agent to be stuck
if it has not moved from a specific point in time until
the end of the simulation. However, an agent may
stop voluntarily because it is near a narrow area and
is waiting for another agent to pass. If the simulation
ends right at that moment, the system might inter-
pret that the agent is permanently stuck, when in fact
it is only temporarily waiting. For this reason, we
only count as real deadlocks those in which agents
did not stop voluntarily but because they were truly
unable to move. Finally, we also register the efficacy
of the agents along the simulation. The efficacy of
an agent at a given moment is the ratio between its
actual speed and its target speed. It is a value be-
tween 0 and 1, with higher values being better, the
closer it is to 1. The value we will calculate is the
average efficacy across all agents and all simulation
steps. We check how much the HL behavior improves
when the graph-based modulation is applied. The
median number of collisions per simulation decreases
from 28 to 16 when the modulation is applied, indi-
cating a significant improvement in the safety of the
agents and their users. A broader summary of the
number of collisions and deadlocks per simulation can
be seen in Fig. 8. It can also be observed that the
probability of an agent getting stuck decreases signifi-
cantly. When the modulation is not applied, only 50%
of the simulations end without agents in a deadlock,
while this percentage rises to more than 80% when
the modulation is applied. Fig. 8 shows details on the
number of deadlocks in the simulations. Finally, we
check that the average efficacy also improves slightly
when the graph-based modulation is applied to the
HL behavior. When the behavior is not modulated,
the average effectiveness is 24.95%, while when the
modulation is applied, the average effectiveness rises to
25.22%. It can be concluded that the performance of
the HL behavior in the Home scenario improves in all
the studied aspects when the graph-based modulation
is applied.

B Malta Cross Scenario

We have included in the code available another custom
scenario: Malta cross scenario, which represents an
intersection between two corridors, one horizontal and
one vertical. Both corridors are connected at their
ends. The shape of the corridors is intentionally unre-

Figure 9: Initialization of the Malta cross scenario.

alistic so that the intersection forms a narrow region
that allows only one agent to pass at a time. This
scenario is initialized with 4 agents: one moving left
in the horizontal corridor, one moving right in the
horizontal corridor, one moving up in the vertical cor-
ridor, and one moving down in the vertical corridor.
It is used to verify that when the modulation is en-
abled, the agents also detect other agents moving in
perpendicular directions. see fig 9.

C ORCA and SF Behaviors

Other standard behaviors available at the Navgraound
platform are: a) the Optimal Reciprocal Collision
Avoidance (ORCA) behavior designed to avoid col-
lisions cooperatively and efficiently by adjusting their
velocities based on the positions and velocities of other
agents in their immediate environment; b) the Social
Force Model (SFM) behavior describes pedestrian dy-
namics using a framework based on fictitious forces:
a pedestrian’s movement is driven by a force that
directs them towards their desired goal, while other
forces repel them from obstacles and other pedestri-
ans, capturing the behavior and social interactions of
pedestrians in crowded environments.

C.1 Experiments with the ORCA and SF Behavior
on the Home Scenario

We repeated the analysis for the simulations using
ORCA as the baseline navigation behavior. The me-
dian number of collisions per simulation decreases from
6 to 0 when the modulation is applied. In fact, Fig. 10
shows that 75% of the simulations that apply ORCA
with the graph-based modulation only have at most
one collision during their 120 seconds. With respect
to the number of deadlocks, the results slightly worsen
when the modulation is applied. When no modulation
is applied, 100% of the simulations end without dead-
locks, while when the modulation is applied, we have
two simulations with one agent blocked and one with
two agents blocked. Anyway, 97% of the simulations
end with all agents navigating freely, which is still a
good result. The average efficacy decreases from 7.38%
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Figure 10: Collisions and deadlocks in the Home sce-
nario between ORCA behavior with and without graph-
based modulation.

to 6.42% when the modulation is applied. In general,
we can say that the results obtained for ORCA are
positive in the Home scenario because the decrease in
the number of collisions is so significant that it com-
pensates for the slight loss in terms of deadlocks and
efficacy.

Finally, we repeated the analysis for the simulations
using SFM as the baseline. Fig. 11 shows the summary
of the results. In this case, the median number of
collisions per simulation decreases from 305.5 to 245
when applying the graph-bawsed modulations. With
respect to the number of deadlocks, we have similar
results to those in the experiments with ORCA. When
no modulation is applied, 100% of the simulations
end without deadlocks, while when the modulation
is applied, we have one simulation with one agent
blocked and two with two agents blocked. The mean
efficacy also goes down from 14.34% to 12.68% when
applying the modulation. Once again, we can say
that the improvement in the number of collisions is so
significant that it compensates for the slight losses in
terms of efficacy and the probability of deadlocks.

Figure 11: Collisions and deadlocks in the Home Sce-
nario between SFM behavior with and without graph-
based modulation.

D Improvement in the Detection of Deadlock
Agents

As previously noted, graph modulation significantly
reduces the number of collisions between agents, es-
pecially in ORCA; however, it slightly worsens the
number of agents in a deadlock state. This led us
to consider the possibility that the NaveGround algo-
rithm was either failing to adequately detect agents
in a deadlock state or misinterpreting the undead-
lock condition. NaveGround considers an agent to
be deadlocked when it remains stationary. However,
we encountered situations where, despite not being
stationary, the agent moves very little within an area
without heading in a fixed direction. This way, we con-
sider the maximum speed for an agent to be classified
as in a deadlock state to be 0.01 m/s.

For this reason, we devised a new parameter-
dependent algorithm that, in particular, accurately
detects agents in a deadlock state based on the criteria
mentioned above. The algorithm takes as parameters
a simulation, the minimum number of steps during
which the agent must have a speed equal to or less
than 0.01 m/s to be considered in a deadlock state,
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and finally, whether modulation is applied or not.
The algorithm consists of checking the speed of all

agents at each step. If the speed is equal to or less
than the maximum considered speed, the counter for
that agent is incremented by 1. If, in a step, the speed
exceeds the maximum considered speed, the counter
is reset to 0. If, at the end, an agent’s counter is equal
to or greater than the number of steps we consider
to determine if the agent is in a deadlock state, it is
classified as such. The modulation parameter, which
indicates whether modulation is applied or not, is
included because agents with modulation may be on
standby, for example, to allow others to pass first. If
the agent is on standby, it is not considered to be in a
deadlock state.

We observed in Fig. 12 for the ORCA and SF behav-
ior that with the new algorithm for counting deadlocks,
more agents in a deadlock state are now being detected.
Besides, we can observe that fewer agents are in such
a deadlock state with modulation than without modu-
lation.

Figure 12: Deadlocks with the new algorithm in the
Home Scenario with the ORCA and SF behavior with
and without graph-based modulation.
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